In one dimension, the study of magnetism dates back to the dawn of quantum mechanics when Bethe solved the famous Heisenberg model that describes quantum behaviour in magnetic systems. In the last decade, one-dimensional (1D) systems have become a forefront area of research driven by the realization of the Tonks-Girardeau gas using cold atomic gases. Here we prove that 1D fermionic and bosonic systems with strong short-range interactions are solvable in arbitrary confining geometries by introducing a new energy-functional technique and obtaining the full spectrum of energies and eigenstates. As a first application, we calculate spatial correlations and show how both ferro-and antiferromagnetic states are present already for small system sizes that are prepared and studied in current experiments. Our work demonstrates the enormous potential for quantum manipulation of magnetic correlations at the microscopic scale.
We present crystal structures of the calcium-free E2 state of the sarcoplasmic reticulum Ca 2 þ -ATPase, stabilized by the inhibitor thapsigargin and the ATP analog AMPPCP. The structures allow us to describe the ATP binding site in a modulatory mode uncoupled from the Asp351 phosphorylation site. The Glu439 side chain interacts with AMPPCP via an Mg 2 þ ion in accordance with previous Fe 2 þ -cleavage studies implicating this residue in the ATPase cycle and in magnesium binding. Functional data on Ca 2 þ mediated activation indicate that the crystallized state represents an initial stage of ATP modulated deprotonation of E2, preceding the binding of Ca 2 þ ions in the membrane from the cytoplasmic side. We propose a mechanism of Ca 2 þ activation of phosphorylation leading directly from the compact E2-ATP form to the Ca 2 E1-ATP state. In addition, a role of Glu439 in ATP modulation of other steps of the functional cycle is suggested.
The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.