Magnetic particle hyperthermia, in which colloidal nanostructures are exposed to an alternating magnetic field, is a promising approach to cancer therapy. Unfortunately, the clinical efficacy of hyperthermia has not yet been optimized. Consequently, routes to improve magnetic particle hyperthermia such as designing hybrid structures comprised from different phase materials are actively pursued. Here we demonstrate enhanced hyperthermia efficiency in relative large spherical Fe/Fe-oxide core/shell nanoparticles through the manipulation of interactions between the core and shell phases. Experimental results on exemplary samples with diameters in the range 30-80 nm indicated a direct correlation of hysteresis losses to the observed temperature elevation rate with a maximum efficiency of around 0.9 kW/g. The absolute particle size, the core/shell ratio, and the interposition of a thin wüstite interlayer, are shown to have powerful effects on the specific absorption rate. By comparing our measurements to micromagnetic calculations we have unveiled topologically non-trivial magnetisation reversal modes under which interparticle interactions become negligible, aggregates formation is minimized, and the energy that is converted into heat is increased. This information has been overlooked till date and is in stark contrast to the existing knowledge on homogeneous particles.
The study presented in this work consists of two parts: The first part is the synthesis of Graphene oxide-Fe3O4 nanocomposites by a mechanochemical method which, is a mechanical process that is likely to yield extremely heterogeneous particles. The second part includes a study on the efficacy of these Graphene oxide-Fe3O4 nanocomposites to kill cancerous cells. Iron powder, ball milled along with graphene oxide in a toluene medium, underwent a controlled oxidation process. Different phases of GO-Fe3O4 nanocomposites were obtained based on the composition used for milling. As synthesized nanocomposites were characterized by x-ray diffraction (XRD), alternating magnetic field (AFM), Raman spectroscopy, and a vibrating sample magnetometer (VSM). Additionally, the magnetic properties required to obtain high SAR values (Specific Absorption Rate-Power absorbed per unit mass of the magnetic nanocomposite in the presence of an applied magnetic field) for the composite were optimized by varying the milling time. Nanocomposites milled for different extents of time have shown differential behavior for magneto thermic heating. The magnetic composites synthesized by the ball milled method were able to retain the functional groups of graphene oxide. The efficacy of the magnetic nanocomposites for killing of cancerous cells is studied in vitro using HeLa cells in the presence of an AC (Alternating Current) magnetic field. The morphology of the HeLa cells subjected to 10 min of AC magnetic field changed considerably, indicating the death of the cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.