The micromechanics involved in increased crack growth resistance, KR, due to the addition of TiBz particulate in a SIC matrix was analyzed both experimentally and theoretically. The fractography evidence, in which, the advancing crack was attracted to adjacent particulates, was attributed to the tensile region surrounding a particulate. Countering this effect is the compressive thermal residual stress, which results in the toughening of the composite, in the matrix. This thermal residual stress field in a particulate-reinforced ceramic-matrix composite is induced by the mismatch in the coefficients of thermal expansion of the matrix and the particulate when the composite is cooled from the processing to room temperature. The increase in K R of the composite over the monolithic matrix, which was measured by using a hybrid experimental-numerical analysis, was 77%, and compared well with the analytically predicted increase of 52%. The increase in K R predicted by the crack deflection model was 14%. Dependence of K R on the volume fraction of particulates, &, and of voids, fv, is also discussed. [
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.