Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.
During transcription of protein-coding genes, bacterial RNA polymerase (RNAP) is closely followed by a ribosome that is engaged in translation of the newly synthesized transcript. Here we show that as a result of translation-transcription coupling the overall elongation rate of transcription is tightly controlled by translation. Acceleration and deceleration of a ribosome results in corresponding changes in the speed of RNAP. Consistently, we found an inverse correlation between the number of rare codons in a gene, which delay ribosome progression, and the rate of transcription. We further show that the stimulating effect of a ribosome on RNAP is achieved by preventing RNAP from adopting non-productive states. The moving ribosome inhibits spontaneous backtracking of RNAP, thereby enhancing its pace and also facilitating read-through of roadblocks in vivo. Such a cooperative mechanism ensures the two gene expression machineries match precisely each other rates, so that the transcriptional yield is always adjusted to translational needs at different genes and under various growth conditions.
UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. We further show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.