In May 1999, in the Kolar district of Karnataka State, Bemisia tabaci numbers on tomato increased by approximately 1,000-fold that observed previously (3). This was associated with an epidemic of severe tomato leaf curl disease that caused complete crop failure. DNAs extracted from 35 symptomatic tomato leaf samples collected within the epidemic region all gave the expected 500 to 600 bp amplicon with begomovirus-specific primers A/B (1). These primers amplify from the conserved nonanucleotide TAATATTAC in the common region of DNA-A to the conserved amino acid sequence CEGPCKYG within the coat protein gene. AluI and TaqI restriction patterns of all 35 polymerase chain reaction (PCR) products were identical. One PCR product from an epidemic (GenBank no. AF321929) and a non-epidemic (AF321930) site (Bangalore) were cloned and sequenced. The two 531-bp inserts showed 96% nucleotide identity to each other and 94% nucleotide identity to the equivalent region of Tomato leaf curl Bangalore virus (ToLCBV-Ban-4) (AF165098), suggesting that the epidemic was caused by an indigenous ToLCBV strain. Adult B. tabaci were collected from tomato plants at nine sites within the epidemic. DNA was extracted from 9 to 13 individuals per site and analyzed by RAPD-PCR using primers OpB20 and OpB11. Eighty to 100% of individuals per site had identical patterns to those of B biotype individuals from Israel and Florida, which were different to the patterns produced by the indigenous Indian B. tabaci. Adult B. tabaci from the epidemic and nonepidemic (Bangalore) regions were cultured separately on zucchini plants (n = 20) vars. Fordhook and Ambassador. Distinct silverleaf symptoms appeared in all plants fed on by the epidemic B. tabaci, but not on those fed on by the nonepidemic whiteflies. Irregular ripening of tomatoes was also a widespread problem in the epidemic area. Cytochrome oxidase I (COI) (720 bp) gene sequences were obtained for epidemic (AF321927) and nonepidemic (AF321928) B. tabaci, which had only 80% nucleotide identity to each other. A GenBank BLAST search showed that the former were most similar to B biotype whitefly from Israel (AF164667; 97%) and Texas (AF164675; 99%). The B biotype transmits Indian ToLCBV (2) and its introduction into India is of great concern as it is already associated with a devastating plant-disease epidemic. References: (1) D. Deng et al. Ann. App. Biol. 125:327, 1994. (2) P. F. McGrath and B. D. Harrison. Ann. App. Biol. 126:307, 1995. (3) H. K. Ramappa et al. Ann. App. Biol. 133:187, 1998.
Yellow mosaic disease (YMD) caused by mungbean yellow mosaic virus (MYMV) is one of the most destructive biotic production constraints in mungbean. Development and introduction of resistant cultivars are considered as the most economical and eco-friendly option to manage YMD, for which availability of stable sources of resistance is a pre-requisite. A set of 14 mungbean genotypes including a susceptible check were evaluated for responses to YMD under natural infection across three seasons and under challenged inoculation in glasshouse for one season. None of the genotypes were immune to YMD and produced different degrees of response to MYMV in terms of yellow mosaic symptoms (YMS). Based on the delayed appearance of initial YMS, and lower estimates of per cent disease index and area under disease progressive curve (AUDPC) in response to natural infection and challenged inoculation, five genotypes namely AVMU 1698, AVMU 1699, AVMU 16100, AVMU 16101 and KPS 2 were identified as resistant to YMD. Failure of detection of MYMV through polymerase chain reaction (PCR) using MYMV coat protein gene-specific primer and successful detection of the same through rolling circle amplification-PCR suggested latent infection of MYMV in resistant genotypes. The resistance response of the five genotypes could be attributed to enhanced activities of enzymes such as peroxidase, polyphenol oxidase and phenylalanine ammonia lyase and increased concentration of total phenols. These results are discussed in relation to strategies to breed mungbean for resistance to YMD.
Background: Yellow mosaic disease (YMD) caused by begomoviruses transmitted through the insect vector Bemisia tabaci poses a serious threat to the production of legume crops. Methods: Season-long surveys were carried out for YMD occurrence in six different legume crops and associated natural weeds both symptomatic and asymptomatic across the districts of southern Karnataka, India. The samples were analyzed through RCA PCR using specific primer pairs. Result: Up to 94.1 per cent YMD incidence was recorded and nine weed species were commonly found associated with legume crops. The weeds viz., Ageratum conyzoides, Alternanthera sessilis, Commelina benghalensis and Euphorbia geniculata were abundantly found in the surveyed regions. The weeds were both symptomatic and asymptomatic. Rolling circle amplification coupled polymerase chain reaction method was employed to detect yellow mosaic virus in asymptomatic weeds. Phylogenetic analysis based on the sequences of PCR amplified products of weeds and symptomatic legumes revealed a close clustering of the weed samples with horsegram yellow mosaic virus, legume yellow mosaic virus and mungbean yellow mosaic virus. Overall, our data suggests the role of weed species associated with legume crops as alternative/collateral hosts of begomoviruses and their role in the epidemiology of yellow mosaic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.