Novel superconducting superlattices with transition temperature in the range 2.5-6.4 K consisting only of semiconducting materials are discovered. Among them there are multilayers, including a wide-gap semiconductor as one of the components. It is shown that superconductivity is connected with the interfaces between two semiconductors containing regular grids of the misfit dislocations. The possibility of the dislocation-induced superconductivity is discussed.
The issue concerning the nature and the role of microstructural inhomogeneities in iron chalcogenide superconducting crystals of FeTe0.65Se0.35 and their correlation with transport properties of this system was addressed. The presented data demonstrate that chemical disorder originating from the kinetics of the crystal growth process significantly influences the superconducting properties of an Fe–Te–Se system. Transport measurements of the transition temperature and critical current density performed for microscopic bridges allow us to deduce the local properties of a superconductor with microstructural inhomogeneities, and significant differences were noted. The variances observed in the local properties were explained as a consequence of weak superconducting links existing in the studied crystals. The results confirm that the inhomogeneous spatial distribution of ions and small hexagonal symmetry nanoscale regions with nanoscale phase separation also seem to enhance the superconductivity in this system with respect to the values of the critical current density. Magnetic measurements performed in order to determine, in an alternative way, the values of the critical current density, as well as to find the relaxation rate and to check the scaling of the pinning force, confirm the conclusions drawn from the transport measurements.
The current-induced destruction of superconductivity is discussed in wide superconducting thin film strips, whose width is greater than the magnetic field penetration depth, in weak magnetic fields. Particular attention is paid to the role of the edge potential barrier (the Bean-Livingston barrier) in critical state formation and detection of the edge responsible for this critical state with different mutual orientations of external perpendicular magnetic field and transport current. Critical and resistive states of the thin film strip were visualized using the space-resolving lowtemperature laser scanning microscopy (LTLSM) method, which enables detection of critical current-determining areas on the thin film edges. Based on these observations, a simple technique was developed for investigation of the critical state separately at each film edge, and for the estimation of residual magnetic fields in cryostats. The proposed method only requires recording of the current-voltage characteristics of the thin film in a weak magnetic field, thus circumventing the need for complex LTLSM techniques. Information thus obtained is particularly important for interpretation of studies of superconducting thin film single-photon light emission detectors.
We report the results of experimental and theoretical studies of critical current oscillations in thin doubly-connected Sn films in an external perpendicular magnetic field. The experiments were performed on samples that consisted of two wide electrodes joined together by two narrow channels. The length of the channels l satisfied the condition l ≫ ξ (ξ is the Ginzburg–Landau coherence length). At temperatures close to the critical temperature Tc, the dependence of the critical current Ic on average external magnetic flux Φ¯e has the form of a piecewise linear function, periodic with respect to the flux quantum Φ0. The amplitude of the Ic oscillation at a given temperature is proportional to the factor ξ/l. Moreover, the dependence Ic=Ic(Φ¯e) is found to be multivalued, hence indicating the presence of metastable states. Based on the Ginzburg–Landau approximation, a theory was constructed that explains the above features of the oscillation phenomenon taking a perfectly symmetric system as an example. Further, the experiments displayed the effects related to the critical currents imbalance between the superconducting channels, i.e., shift of the maxima of the dependence Ic=Ic(Φ¯e) accompanied by an asymmetry with respect to the transport current direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.