Ghrelin is a novel 28-amino acid gut-brain peptide, which was first isolated in the rat stomach. This study examined the effect of ghrelin on insulin secretion from the isolated pancreas of normal and diabetic rats. Diabetes was induced by a single dose of streptozotocin. Four weeks after the induction of diabetes, pancreatic tissue fragments of normal and diabetic rats were treated with different concentrations (10(-12), 10(-9) and 10(-6) M) of ghrelin. Ghrelin evoked large and significant increases in insulin secretion from the pancreas of both normal and diabetic rats. In the pancreas of normal rats, diltiazem (calcium channel antagonist) or a combination of atropine (muscarinic cholinergic receptor antagonist), propranolol (beta-adrenergic receptor antagonist) and yohimbine (alpha2-adrenergic receptor antagonist) significantly reduced the stimulatory effect of ghrelin on insulin secretion. Diltiazem and yohimbine failed to inhibit ghrelin-evoked insulin release in diabetic rat pancreas. Ghrelin-immunoreactivity cells was observed in 2.6% and 3.8% of the total cell population in the islet of Langerhans of normal and diabetic rats, respectively.
Research focused on deciphering the biochemical mechanisms that regulate cell proliferation and function has largely depended on the use of tissue culture methods in which cells are grown on two-dimensional (2D) plastic or glass surfaces. However, the flat surface of the tissue culture plate represents a poor topological approximation of the more complex three-dimensional (3D) architecture of the extracellular matrix (ECM) and the basement membrane (BM), a structurally compact form of the ECM. Recent work has provided strong evidence that the highly porous nanotopography that results from the 3D associations of ECM and BM nanofibrils is essential for the reproduction of physiological patterns of cell adherence, cytoskeletal organization, migration, signal transduction, morphogenesis, and differentiation in cell culture. In vitro approximations of these nanostructured surfaces are therefore desirable for more physiologically mimetic model systems to study both normal and abnormal functions of cells, tissues, and organs. In addition, the development of 3D culture environments is imperative to achieve more accurate cell-based assays of drug sensitivity, high-throughput drug discovery assays, and in vivo and ex vivo growth of tissues for applications in regenerative medicine.
Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.