Russian Federation.Sobolev-type equations (equations not solved for the highest derivative) probably first appeared in the late nineteenth century. The growing recent interest in Sobolev-type equations motivates us to consider them in quasi-Banach spaces. Specifically, this study aims at understanding non-classical models of mathematical physics in quasi-Banach spaces.This paper carries over the theory of degenerate strongly continuous semigroups obtained earlier in Banach spaces to quasi-Banach spaces. We prove an analogue of the direct Hille-Yosida-Feller-Miyadera-Phillips theorem. As an application of abstract results, we consider the Showalter-Sidorov problem for modified linear Chen-Gurtin equations in quasi-Sobolev spaces.
The Kudryashov and Sinelshchikov (KS) equation address pressure waves in liquid-gas bubble mixtures while considering heat transport and viscosity. This study mainly includes two types of generalized solutions: polynomial function traveling wave solutions and rational function traveling wave solutions. In this study, we constructed the KS equation's exact traveling and solitary wave solutions with variable coefficients by the generalized unified method (GUM). These newly created solutions play a significant role in mathematical physics, optical fiber physics, plasma physics, and other applied sciences disciplines. We illustrated the dynamical behavior of the discovered solutions in three dimensions. We proposed the possibility of discussing wave interaction and other wave structures using bilinear form related to the Hirota method for the fractional solution.
We consider some nonlinear partial differential equations in higher dimensions, the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1) dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in (2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV) equations in (3+1) dimensions. We show that these equations can be reduced to the same class of ordinary differential equations via wave reduction variable. Solutions in terms of symmetrical Fibonacci and Lucas functions are presented by implementation of the modified Kudryashov method.
In this article, we investigate spectrum estimation of law order moving average (MA) process. The main tool is the lag window which is one of the important components of the consistent form to estimate spectral density function (SDF). We show, based on a computer simulation, that the Blackman window is the best lag window to estimate the SDF of MA1 and MA2 at the most values of parameters βi and series sizes n, except for a special case when β=−1 and n≥40 in MA1. In addition, the Hanning–Poisson window appears as the best to estimate the SDF of MA2 when β1=β2=−0.5 and n≥40.
The aim of this work is to deal with a new integrable nonlinear equation of wave propagation, the combined of the Korteweg-de vries equation and the negative order Korteweg-de vries equation (combined KdV-nKdV) equation, which was more recently proposed by Wazwaz. Upon using wave reduction variable, it turns out that the reduced combined KdV-nKdV equation is alike the reduced (3+1)-dimensional Jimbo Miwa (JM) equation, the reduced (3+1)-dimensional Potential Yu-Toda-Sasa-Fukuyama (PYTSF) equation and the reduced (3 + 1)¬dimensional generalized shallow water (GSW) equation in the trav¬elling wave. In fact, the four transformed equations belong to the same class of ordinary differential equation. With the benefit of a well known general solutions for the reduced equation, we show that sub¬jects to some scaling and change of parameters, a variety of families of solutions are constructed for the combined KdV-nKdV equation which can be expressed in terms of rational functions, exponential functions and periodic solutions of trigonometric functions and hyperbolic func¬tions. In addition to that the equation admits solitary waves, and double periodic waves in terms of special functions such as Jacobian elliptic functions and Weierstrass elliptic functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.