Self-propagating high-temperature synthesis (SHS) or combustion synthesis (CS) is a rapidly developing research area. SHS materials are being used in various fields, including mechanical and chemical engineering, medical and bioscience, aerospace and nuclear industries. The goal of the present paper is to provide a comprehensive state-of-the-art review and to analyse a critical mass of knowledge in the field of SHS materials and coatings. We also briefly discuss the history and scientific foundations of SHS along with an overview of the technological aspects for synthesis of different materials, including powders, ceramics, metal-ceramics, intermetallides, and composite materials. Application of CS in the field of surface engineering is also discussed focusing on two main routes for applying SHS to coating deposition: (i) single-step formation of the desired coatings and (ii) use of SHSderived powders, targets or electrodes in the coating deposition processes.
Gasless combustion of a mechanically activated Ni-Al mixture is experimentally studied; the process is compared with the characteristics of combustion of a nonactivated Ni-Al mixture. Mechanical activation of the Ni-Al mixture is shown to form layered conglomerates consisting of numerous layers of the initial components. As a result, the structure of the medium becomes very similar to a cellular structure, which forms the basis for advanced microheterogeneous models of gasless combustion. A relation between the local (microscopic) and global (macroscopic) parameters of gasless combustion is found. Modification of the microstructure of the initial medium by means of mechanical activation allows obtaining products whose microstructure differs significantly from the microstructure of products obtained from nonactivated mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.