In the present study, in vitro selection technique using pathogen culture filtrate of Colletotrichum falcatum Went was employed with the aim to identify associations (if any), between selection at the cellular and plant level for red rot resistance in sugarcane (Saccharum sp.). Five to eight months old sugarcane calli of genotypes CoJ 88 and CoJ 64 were screened in vitro against pathogen culture filtrate for two selection cycles. Effect of pathogen culture filtrate on callus survival and/or proliferation was observed to be directly related to its concentration in the selection media. Calli survived and exhibited further proliferation at 5, 10 and 15% v/v pathogen culture filtrate concentrations whereas, at higher concentrations (20 and 25% v/v) proliferation was completely inhibited. Shoot regeneration percent was higher in calli selected on 5% pathogen culture filtrate concentration than those selected on 10 and 15% concentrations. In vivo screening of field transferred somaclones against two pathtypes (Cf 03 and Cf 08) showed considerable variation for red rot resistance. Somaclones regenerated from resistant and/or tolerant calli exhibited better resistance than the parental genotypes. The results indicated that in vitro selection for red rot resistance was effective and expressed when somaclones were screened in the field. This indicated a positive association between in vitro and in vivo methods of selection for disease resistance in sugarcane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.