A new type of high-selective Bragg resonator having a step of corrugation inside the interaction region was used as a microwave system for a free-electron maser (FEM). Using a LINAC LIU-3000 (1 MeV/200 A/200 ns) to drive the FEM oscillator, a single-mode single-frequency operation was achieved at a frequency of 30.74 GHz with an output power of about 50 MW, which corresponded to a record efficiency of 35% for a millimeter wavelength FEM.
A tunable planar narrow-band Bragg reflector based on coupling of the two propagating modes and a cutoff mode is considered. Coupled-wave analysis together with direct numerical simulations demonstrate operation of the proposed scheme up to the terahertz frequency band. Compatibility with the transportation of an intense electron beam encourages the use of a novel Bragg reflector in powerful long-pulse free electron lasers.
Articles you may be interested inQuasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures Phys. Plasmas 20, 113104 (2013); 10.1063/1.4826221Oversized co-axial and cylindrical surface-wave oscillators with two-dimensional periodical grating (quasi-optical model)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.