BackgroundHereditary short stature syndromes are clinically and genetically heterogeneous disorders and the cause have not been fully identified. Yakuts are a population isolated in Asia; they live in the far east of the Russian Federation and have a high prevalence of hereditary short stature syndrome including 3-M syndrome. A novel short stature syndrome in Yakuts is reported here, which is characterised by autosomal recessive inheritance, severe postnatal growth retardation, facial dysmorphism with senile face, small hands and feet, normal intelligence, Pelger-Huët anomaly of leucocytes, and optic atrophy with loss of visual acuity and colour vision. This new syndrome is designated as short stature with optic atrophy and Pelger-Huët anomaly (SOPH) syndrome.AimsTo identify a causative gene for SOPH syndrome.MethodsGenomewide homozygosity mapping was conducted in 33 patients in 30 families.ResultsThe disease locus was mapped to the 1.1 Mb region on chromosome 2p24.3, including the neuroblastoma amplified sequence (NBAS) gene. Subsequently, 33 of 34 patients were identified with SOPH syndrome and had a 5741G/A nucleotide substitution (resulting in the amino acid substitution R1914H) in the NBAS gene in the homozygous state. None of the 203 normal Yakuts individuals had this substitution in the homozygous state. Immunohistochemical analysis revealed that the NBAS protein is well expressed in retinal ganglion cells, epidermal skin cells, and leucocyte cytoplasm in controls as well as a patient with SOPH syndrome.ConclusionThese findings suggest that function of NBAS may associate with the pathogenesis of short stature syndrome as well as optic atrophy and Pelger-Huët anomaly.
Mucopolysaccharidoses (MPS) are a group of genetic deficiencies of lysosomal enzymes that catabolize glycosaminoglycans (GAG). Here we describe a novel MPS-like disease caused by a specific mutation in the VPS33A gene. We identified several Yakut patients showing typical manifestations of MPS: coarse facial features, skeletal abnormalities, hepatosplenomegaly, respiratory problems, mental retardation, and excess secretion of urinary GAG. However, these patients could not be diagnosed enzymatically as MPS. They showed extremely high levels of plasma heparan sulphate (HS, one of GAG); 60 times the normal reference range and 6 times that of MPS patients. Additionally, most patients developed heart, kidney, and hematopoietic disorders, which are not typical symptoms for conventional MPS, leading to a fatal outcome between 1 and 2-years old. Using whole exome and Sanger sequencing, we identified homozygous c.1492C > T (p.Arg498Trp) mutations in the VPS33A gene of 13 patients. VPS33A is involved in endocytic and autophagic pathways, but the identified mutation did not affect either of these pathways. Lysosomal over-acidification and HS accumulation were detected in patient-derived and VPS33A-depleted cells, suggesting a novel role of this gene in lysosomal functions. We hence propose a new type of MPS that is not caused by an enzymatic deficiency.
These findings may provide a new understanding of the clinical diversity and pathogenesis of short stature syndrome with CUL7 mutation.
Previously, we reported a novel disease of impaired glycosaminoglycans (GAGs) metabolism without deficiency of known lysosomal enzymes—mucopolysaccharidosis-plus syndrome (MPSPS). MPSPS, whose pathophysiology is not elucidated, is an autosomal recessive multisystem disorder caused by a specific mutation p.R498W in the VPS33A gene. VPS33A functions in endocytic and autophagic pathways, but p.R498W mutation did not affect both of these pathways in the patient’s skin fibroblast. Nineteen patients with MPSPS have been identified: seventeen patients were found among the Yakut population (Russia) and two patients from Turkey. Clinical features of MPSPS patients are similar to conventional mucopolysaccharidoses (MPS). In addition to typical symptoms for conventional MPS, MPSPS patients developed other features such as congenital heart defects, renal and hematopoietic disorders. Diagnosis generally requires evidence of clinical picture similar to MPS and molecular genetic testing. Disease is very severe, prognosis is unfavorable and most of patients died at age of 10–20 months. Currently there is no specific therapy for this disease and clinical management is limited to supportive and symptomatic treatment.
The human serine protease serine 2 TMPRSS2 is involved in the priming of proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and represents a possible target for COVID-19 therapy. The TMPRSS2 gene may be co-expressed with SARS-CoV-2 cell receptor genes angiotensin-converting enzyme 2 (ACE2) and Basigin (BSG), but only TMPRSS2 demonstrates tissue-specific expression in alveolar cells according to single-cell RNA sequencing data. Our analysis of the structural variability of the TMPRSS2 gene based on genome-wide data from 76 human populations demonstrates that a functionally significant missense mutation in exon 6/7 in the TMPRSS2 gene is found in many human populations at relatively high frequencies, with region-specific distribution patterns. The frequency of the missense mutation encoded by rs12329760, which has previously been found to be associated with prostate cancer, ranged between 10% and 63% and was significantly higher in populations of Asian origin compared with European populations. In addition to single-nucleotide polymorphisms, two copy number variants were detected in the TMPRSS2 gene. A number of microRNAs have been predicted to regulate TMPRSS2 and BSG expression levels, but none of them is enriched in lung or respiratory tract cells. Several well-studied drugs can downregulate the expression of TMPRSS2 in human cells, including acetaminophen (paracetamol) and curcumin. Thus, the interactions of TMPRSS2 with SARS-CoV-2, together with its structural variability, gene–gene interactions, expression regulation profiles, and pharmacogenomic properties, characterize this gene as a potential target for COVID-19 therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.