A systematic approach to computer-aided materials design has formulated a new class of ultratough, weldable secondary hardened plate steels combining new levels of strength and toughness while meeting processability requirements. A theoretical design concept integrated the mechanism of precipitated nickel-stabilized dispersed austenite for transformation toughening in an alloy strengthened by combined precipitation of M 2 C carbides and BCC copper both at an optimal ∼3 nm particle size for efficient strengthening. This concept was adapted to plate steel design by employing a mixed bainitic/martensitic matrix microstructure produced by air-cooling after solution-treatment and constraining the composition to low carbon content for weldability. With optimized levels of copper and M 2 C carbide formers based on a quantitative strength model, a required alloy nickel content of 6.5 wt% was predicted for optimal austenite stability for transformation toughening at the desired strength level of 160 ksi (1,100 MPa) yield strength. A relatively high Cu level of 3.65 wt% was employed to allow a carbon limit of 0.05 wt% for good weldability, without causing excessive solidification microsegregation.
Application of a systems approach to computational materials design led to the theoretical design of a transformation toughened ultratough high-strength plate steel for blast-resistant naval hull applications. A first prototype alloy has achieved property goals motivated by projected naval hull applications requiring extreme fracture toughness (C v > 85 ft-lbs or 115 J corresponding to K Id ≥ 200 ksi.in 1/2 or 220 MPa.m 1/2 ) at strength levels of 150-180 ksi (1,030-1,240 MPa) yield strength in weldable, formable plate steels. A continuous casting process was simulated by slab casting the prototype alloy as a 1.75 (4.45 cm) plate. Consistent with predictions, compositional banding in the plate was limited to an amplitude of 6-7.5 wt% Ni and 3.5-5 wt% Cu. Examination of the oxide scale showed no evidence of hot shortness in the alloy during hot working. Isothermal transformation kinetics measurements demonstrated achievement of 50% bainite in 4 min at 360 • C. Hardness and tensile tests confirmed predicted precipitation strengthening behavior in quench and tempered material. Multi-step tempering conditions were employed to achieve the optimal austenite stability resulting in significant increase of impact toughness to 130 ft-lb (176 J) at a strength level of 160 ksi (1,100 MPa). Comparison with the baseline toughness-strength combination determined by isochronal tempering studies indicates a transformation toughening increment of 65% in Charpy energy. Predicted Cu particle number densities and the heterogeneous nucleation of optimal stability high Ni 5 nm austenite on nanometer-scale copper precipitates in the multi-step tempered samples was confirmed using three-dimensional atom probe microanalysis. A. Saha et al. Charpy impact tests and fractography demonstrate ductile fracture with C v > 80 ft-lbs (108 J) down to −40 • C, with a substantial toughness peak at 25 • C consistent with designed transformation toughening behavior. The properties demonstrated in this first prototype represent a substantial advance over existing naval hull steels. Achieving these improvements in a single design and prototyping iteration is a significant advance in computational materials design capability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.