Abstract— We report the room‐temperature fluorescence decay times of calf thymus DNA when native and when 16% of its guanine residues are methylated at theN–7 position. The samples were excited with single, 25 ps, 266 nm laser pulses from a frequency‐quadrupled Nd: YAG laser. Fluorescence was detected with a streak camera‐optical multichannel analyzer system that has a time jitter of about 2 ps. For DNA and methylated DNA we detected a major component that has a decay time of about 10 and 20 ps, respectively. A second component has a corresponding decay time of about 65 and 80 ps and makes a contribution of0–10% and20–40% depending on the transmission characteristics of the emission filter employed. In contrast, the decay time of 7‐methyl GMP, which contains the same fluorophore as methylated DNA, is approximately single exponential and has a decay time of180–210 ps depending on the emission filter. The absence of a pronounced time delay between the fluorescence decay profiles of the nucleic acids and the exciting light pulse points against the formation of excited‐state complexes (excimers).
The room‐temperature optical properties of calf thymus DNA, with about 75% of its guanine residues methylated at position N‐7, are compared with those of 7‐methyl GMP which has the same fluorophore. The fluorescence spectrum of the methylated guanine residues depends strongly on the excitation wavelength, shifting to the blue as the wavelength increases. The fluorescence quantum yield, corrected for the contribution to absorption by the other virtually nonfluorescent residues, exhibits a pronounced drop at long excitation wavelengths relative to that for excitation at 265 nm. The degree of fluorescence polarization exhibits a weak dependence on the excitation and emission wavelengths. For 7‐methyl GMP, the fluorescence spectrum is very weakly dependent on the excitation wavelength and its fluorescence quantum yield shows a moderate increase at long wavelengths. The degree of fluorescence polarization increases with increasing excitation wavelength particularly when monitoring the emission in the short wavelength region of the fluorescence spectrum. A pronounced drop of unknown origin is observed when exciting at 265 nm, which is not observed for methylated DNA. The methylated DNA data are interpreted in terms of a combination of (i) a heterogeneous environment of the methylated guanine residues, which results from sequence‐dependent stacking interactions, and (ii) transfer of excitation energy from the other residues to the fluorescing methylated guanine residues. From the values of the quantum yields and those of the decay times, which we have recently reported (Georghiou et al., 1985), the following values are obtained for the radiative, kt, and the sum of the nonradiative, σk1, rate constants for deexcitation of the excited states of methylated DNA and its free fluorophore: 1.6 × 108 s‐1 7 × 107 s‐1 and 5 × 1010 s‐lvs 6 × 109 s‐1. Because of energy transfer from the other residues. the kf value for the methylated guanine residues is overestimated but their σk1, value is not affected significantly and is by about an order of magnitude larger than that for 7‐methyl GMP, apparently because of stacking interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.