An exclusive measurement has been made of the Coulomb dissociation of the two-neutron halo nucleus 11Li at 70 MeV/nucleon at RIKEN. Strong low-energy (soft) E1 excitation is observed, peaked at about Ex = 0.6 MeV with B(E1) = 1.42(18) e2fm2 for Erel < or = 3 MeV, which was largely missed in previous measurements. This excitation represents the strongest E1 transition ever observed at such low excitation energies. The spectrum is reproduced well by a three-body model with a strong two-neutron correlation, which is further supported by the E1 non-energy-weighted cluster sum rule.
The cross sections for single-neutron removal from the very neutron-rich nucleus 31Ne on Pb and C targets have been measured at 230 MeV/nucleon using the RIBF facility at RIKEN. The deduced large Coulomb breakup cross section of 540(70) mb is indicative of a soft E1 excitation. Comparison with direct-breakup model calculations suggests that the valence neutron of 31Ne occupies a low-l orbital (most probably 2p(3/2)) with a small separation energy (S(n) approximately < 0.8 MeV), instead of being predominantly in the 1f(7/2) orbital as expected from the conventional shell ordering. These findings suggest that 31Ne is the heaviest halo system known.
A new measurement of proton resonance scattering on 7 Be was performed up to the center-of-mass energy of 6.7 MeV using the low-energy RI beam facility CRIB (CNS Radioactive Ion Beam separator) at the Center for Nuclear Study of the University of Tokyo. The excitation function of 7 Be+p elastic scattering above 3.5 MeV was measured successfully for the first time, providing important information about the resonance structure of the 8 B nucleus. The resonances are related to the reaction rate of 7 Be(p,γ) 8 B, which is the key reaction in solar 8 B neutrino production. Evidence for the presence of two negative parity states is presented. One of them is a 2 − state observed as a broad s-wave resonance, the existence of which had been questionable. Its possible effects on the determination of the astrophysical S-factor of 7 Be(p,γ) 8 B at solar energy are discussed. The other state had not been observed in previous measurements, and its J π was determined as 1 − .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.