An exclusive measurement has been made of the Coulomb dissociation of the two-neutron halo nucleus 11Li at 70 MeV/nucleon at RIKEN. Strong low-energy (soft) E1 excitation is observed, peaked at about Ex = 0.6 MeV with B(E1) = 1.42(18) e2fm2 for Erel < or = 3 MeV, which was largely missed in previous measurements. This excitation represents the strongest E1 transition ever observed at such low excitation energies. The spectrum is reproduced well by a three-body model with a strong two-neutron correlation, which is further supported by the E1 non-energy-weighted cluster sum rule.
The cross sections for single-neutron removal from the very neutron-rich nucleus 31Ne on Pb and C targets have been measured at 230 MeV/nucleon using the RIBF facility at RIKEN. The deduced large Coulomb breakup cross section of 540(70) mb is indicative of a soft E1 excitation. Comparison with direct-breakup model calculations suggests that the valence neutron of 31Ne occupies a low-l orbital (most probably 2p(3/2)) with a small separation energy (S(n) approximately < 0.8 MeV), instead of being predominantly in the 1f(7/2) orbital as expected from the conventional shell ordering. These findings suggest that 31Ne is the heaviest halo system known.
Reaction cross sections (sigma(R)) for 19C, 20C and the drip-line nucleus 22C on a liquid hydrogen target have been measured at around 40A MeV by a transmission method. A large enhancement of sigma(R) for 22C compared to those for neighboring C isotopes was observed. Using a finite-range Glauber calculation under an optical-limit approximation the rms matter radius of 22C was deduced to be 5.4+/-0.9 fm. It does not follow the systematic behavior of radii in carbon isotopes with N < or = 14, suggesting a neutron halo. It was found by an analysis based on a few-body Glauber calculation that the two-valence neutrons in 22C preferentially occupy the 1s(1/2) orbital.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.