, U. hopp 5,6 , C. Haumea-one of the four known trans-Neptunian dwarf planetsis a very elongated and rapidly rotating body 1-3 . In contrast to other dwarf planets [4][5][6] , its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system 7 , and the Centaur Chiron was later found to possess something similar to Chariklo's rings 8,9 . Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multichord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates 1, 10,11 . In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen-or methane-dominated atmosphere was detected.Within our programme of physical characterization of trans-Neptunian objects (TNOs), we predicted an occultation of the star URAT1 533− 182543 by the dwarf planet (136108) Haumea and arranged observations as explained in Methods. Positive occultation detections were obtained on 2017 January 21, from twelve telescopes at ten different observatories. The instruments and the main features of each station are listed in Table 1.As detailed in Methods (see also Fig. 1), the light curves (the normalized flux from the star plus Haumea versus time) show deep 1 2
We analyze data retrieved by the imaging science system onboard the Cassini spacecraft to study the horizontal velocity and vorticity fields of Saturn's polar regions (latitudes 60-90°N in June-December 2013 and 60-90°S in October 2006 and July-December 2008), including the northern region where the hexagonal wave is prominent. With the aid of an automated two-dimensional correlation algorithm we determine two-dimensional maps of zonal and meridional winds and deduce vorticity maps. We extract zonal averages of zonal winds, providing wind profiles that reach latitudes as high as 89.5°in the south and 89.9°in the north. Wind measurements cover the intense polar cyclonic vortices that reach similar peak velocities of 150 m s À1 at ±88.5°. The hexagonal wave lies in the core of an intense eastward jet at planetocentric latitude 75.8°N with motions that become nonzonal at the hexagonal feature. In the south hemisphere the peak of the eastward jet is located at planetocentric latitude 70.4°S. A large anticyclone (the south polar spot, SPS), similar to the north polar spot (NPS) observed at the Voyager times (1980)(1981), has been observed in images from April 2008 to January 2009 in the south polar region at latitude À66.1°close to the eastward jet. The SPS does not apparently excite a wave on the jet. We analyze the stability of the zonal jets, finding potential instabilities at the flanks of the eastward jets around 70°, and we measure the eddy wind components, suggesting momentum transfer from eddy motion to the westward jets closer to the poles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.