Context. We model the dust and free-free continuum emission in the high-mass star-forming region Sagittarius B2. Aims. We want to reconstruct the 3D density and dust temperature distribution, as a crucial input to follow-up studies of the gas velocity field and molecular abundances. Methods. We employ the 3D radiative transfer program RADMC-3D to calculate the dust temperature self-consistently, providing a given initial density distribution. This density distribution of the entire cloud complex is then recursively reconstructed, based on available continuum maps, including both single-dish and high-resolution interferometric maps that cover a wide frequency range (ν = 40 GHz−4 THz). The model covers spatial scales from 45 pc down to 100 au, i.e., a spatial dynamic range of 10 5 . Results. We find that the density distribution of Sagittarius B2 can be reasonably well fitted by applying a superposition of spherical cores with Plummer-like density profiles. To reproduce the spectral energy distribution, we position Sgr B2(N) along the line of sight behind the plane containing Sgr B2(M). We find that the entire cloud complex comprises a total gas mass of 8.0 × 10 6 M within a diameter of 45 pc. This corresponds to an averaged gas density of 170 M pc −3 . We estimate stellar masses of 2400 M and 20 700 M and luminosities of 1.8 × 10 6 L and 1.2 × 10 7 L for Sgr B2(N) and Sgr B2(M), respectively. We report H 2 column densities of 2.9 × 10 24 cm −2 for Sgr B2(N) and 2.5 × 10 24 cm −2 for Sgr B2(M) in a 40 beam. For Sgr B2(S), we derive a stellar mass of 1100 M , a luminosity of 6.6 × 10 5 L , and an H 2 column density of 2.2 × 10 24 cm −2 in a 40 beam. We calculate a star formation efficiency of 5% for Sgr B2(N) and 50% for Sgr B2(M). This indicates that most of the gas content in Sgr B2(M) has already been converted to stars or dispersed.
In order to study the fragmentation of massive dense cores, which constitute the cluster cradles, we observed with the PdBI in the most extended configuration the continuum at 1.3 mm and the CO (2-1) emission of four massive cores. We detect dust condensations down to ∼ 0.3 M ⊙ and separate millimeter sources down to 0.4 ′′ or 1000 AU, comparable to the sensitivities and separations reached in optical/infrared studies of clusters. The CO (2-1) high angular resolution images reveal high-velocity knots usually aligned with previously known outflow directions. This, in combination with additional cores from the literature observed at similar mass sensitivity and spatial resolution, allowed us to build a sample of 18 protoclusters with luminosities spanning 3 orders of magnitude. Among the 18 regions, ∼ 30% show no signs of fragmentation, while 50% split up into 4 millimeter sources. We compiled a list of properties for the 18 massive dense cores, such as bolometric luminosity, total mass, and mean density, and found no correlation of any of these parameters with the fragmentation level. In order to investigate the combined effects of magnetic field, radiative feedback and turbulence in the fragmentation process, we compared our observations to radiation magneto-hydrodynamic simulations, and obtained that the low-fragmented regions are well reproduced in the magnetized core case, while the highly-fragmented regions are consistent with cores where turbulence dominates over the magnetic field. Overall, our study suggests that the fragmentation in massive dense cores could be determined by the initial magnetic field/turbulence balance in each particular core.
Context. High-mass stars form in clusters, but neither the early fragmentation processes nor the detailed physical processes leading to the most massive stars are well understood. Aims. We aim to understand the fragmentation, as well as the disk formation, outflow generation, and chemical processes during high-mass star formation on spatial scales of individual cores. Methods. Using the IRAM Northern Extended Millimeter Array (NOEMA) in combination with the 30 m telescope, we have observed in the IRAM large program CORE the 1.37 mm continuum and spectral line emission at high angular resolution (~0.4″) for a sample of 20 well-known high-mass star-forming regions with distances below 5.5 kpc and luminosities larger than 104 L⊙. Results. We present the overall survey scope, the selected sample, the observational setup, and the main goals of CORE. Scientifically, we concentrated on the mm continuum emission on scales on the order of 1000 AU. We detect strong mm continuum emission from all regions, mostly due to the emission from cold dust. The fragmentation properties of the sample are diverse. We see extremes where some regions are dominated by a single high-mass core whereas others fragment into as many as 20 cores. A minimum-spanning-tree analysis finds fragmentation at scales on the order of the thermal Jeans length or smaller suggesting that turbulent fragmentation is less important than thermal gravitational fragmentation. The diversity of highly fragmented vs. singular regions can be explained by varying initial density structures and/or different initial magnetic field strengths. Conclusions. A large sample of high-mass star-forming regions at high spatial resolution allows us to study the fragmentation properties of young cluster-forming regions. The smallest observed separations between cores are found around the angular resolution limit which indicates that further fragmentation likely takes place on even smaller spatial scales. The CORE project with its numerous spectral line detections will address a diverse set of important physical and chemical questions in the field of high-mass star formation.
We present the results of combined NH 3 (1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100 m telescope of the Infrared Dark Cloud G14.225-0.506. The NH 3 emission reveals a network of filaments constituting two hub-filament systems. Hubs are associated with gas of rotational temperature T rot ∼15 K, non-thermal velocity dispersion σ NT ∼1 km s −1 , and exhibit signs of star formation, while filaments appear to be more quiescent (T rot ∼11 K, σ NT ∼0.6 km s −1 ). Filaments are parallel in projection and distributed mainly along two directions, at PA∼10 • and 60 • , and appear to be coherent in velocity. The averaged projected separation between adjacent filaments is between 0.5 pc and 1 pc, and the mean width of filaments is 0.12 pc. Cores within filaments are separated by ∼0.33±0.09 pc, which is consistent with the predicted fragmentation of an isothermal gas cylinder due to the 'sausage'-type instability. The network of parallel filaments observed in G14.225-0.506 is consistent with the gravitational instability of a thin gas layer threaded by magnetic fields. Overall, our data suggest that magnetic fields might play an important role in the alignment of filaments, and polarization measurements in the entire cloud would lend further support to this scenario. Subject headings: stars: formation -ISM: clouds -ISM: individual objects (G14.225-0.506)
Aims. We describe the assignment of a previously unidentified interstellar absorption line to ArH + and discuss its relevance in the context of hydride absorption in diffuse gas with a low H 2 fraction. The confidence of the assignment to ArH + is discussed, and the column densities are determined toward several lines of sight. The results are then discussed in the framework of chemical models, with the aim of explaining the observed column densities. Methods. We fitted the spectral lines with multiple velocity components, and determined column densities from the line-to-continuum ratio. The column densities of ArH + were compared to those of other species, tracing interstellar medium (ISM) components with different H 2 abundances. We constructed chemical models that take UV radiation and cosmic ray ionization into account. , and HF column densities promises to be a faithful tracer of the distribution of the H 2 fractional abundance by providing unique information on a poorly known phase in the cycle of interstellar matter and on its transition from atomic diffuse gas to dense molecular gas traced by CO emission. Abundances of these species put strong observational constraints upon magnetohydrodynamical (MHD) simulations of the interstellar medium, and potentially could evolve into a tool characterizing the ISM. Paradoxically, the ArH + molecule is a better tracer of almost purely atomic hydrogen gas than H itself, since H can also be present in gas with a significant molecular content, but ArH + singles out gas that is >99.9% atomic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.