Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M d = 5.4 × 10 7 M , the global dust/H mass ratio is M d /M H = 0.0081, and the global PAH abundance is q PAH = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M d /M H ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar mediu (ISM) metallicity to vary by a factor ∼10, from Z/Z ≈ 3 at R = 0 to ∼ 0.3 at R = 25 kpc. The dust heating rate parameter U peaks at the center, with U ≈ 35, declining to U ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q PAH ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q PAH for the dust in the central kiloparsec is similar to the overall value of q PAH in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500µm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600µm) than in the model. Subtraction of foreground and background emission has been carried out following methods described in Aniano et al. (2012), with automatic identification of background pixels and fitting of a "tilted plane" background model (with three parameters -zero point, tilt, and tilt orientation) for 3 IRAC images in bands 1-4 were multiplied by extended source calibration factors 0.91, 0.94, 0.66, 0.74 (Reach et al. 2005). 4 MIPS images were generated by the Mips enhancer v3.10 pipeline on 2007 Jul 3. 5 The PACS and SPIRE images were processed by HIPE v9, and the Level 1 HIPE images were then processed by Scanamorphos v18.0 (Roussel 2013). We used the calibration files in HIPE v9 (version 42 for PACS, and version 10.0 for SPIRE). Intensities in the SPIRE bands were obtained by dividing the HIPE v9 flux density per beam by effective beam solid angles Ω = (1.103, 1.944, 4.183) × 10 −8 sr for SPIRE250, 350, and 500, as recommended by Griffin et al. (2013).
We present ∼kiloparsec spatial resolution maps of the CO-to-H 2 conversion factor (α CO ) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α CO and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H i column density to solve for both α CO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, 12 CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H i 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α CO results on the more typically used 12 CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α CO and the DGR. On average, α CO = 3.1 M pc −2 (K km s −1 ) −1 for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α CO as a function of galactocentric radius. However, most galaxies exhibit a lower α CO value in the central kiloparsec-a factor of ∼2 below the galaxy mean, on average. In some cases, the central α CO value can be factors of 5-10 below the standard Milky Way (MW) value of α CO,MW = 4.4 M pc −2 (K km s −1 ) −1 . While for α CO we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α CO for studies of nearby galaxies.
Using spectral-line observations of HNCO, N 2 H + , and HNC, we investigate the kinematics of dense gas in the central ∼ 250 pc of the Galaxy. We present scouse (Semi-automated multi-COmponent Universal Spectral-line fitting Engine), a line-fitting algorithm designed to analyse large volumes of spectral-line data efficiently and systematically. Unlike techniques which do not account for complex line profiles, scouse accurately describes the {l, b, v LSR } distribution of Central Molecular Zone (CMZ) gas, which is asymmetric about Sgr A* in both position and velocity. Velocity dispersions range from 2.6 km s −1 < σ < 53.1 km s −1 . A median dispersion of 9.8 km s −1 , translates to a Mach number, M 3D 28. The gas is distributed throughout several "streams", with projected lengths ∼ 100 − 250 pc. We link the streams to individual clouds and sub-regions, including Sgr C, the 20 and 50 km s −1 clouds, the dust ridge, and Sgr B2. Shell-like emission features can be explained by the projection of independent molecular clouds in Sgr C and the newly identified conical profile of Sgr B2 in {l, b, v LSR } space. These features have previously invoked supernova-driven shells and cloud-cloud collisions as explanations. We instead caution against structure identification in velocity-integrated emission maps. Three geometries describing the 3-D structure of the CMZ are investigated: i) two spiral arms; ii) a closed elliptical orbit; iii) an open stream. While two spiral arms and an open stream qualitatively reproduce the gas distribution, the most recent parameterisation of the closed elliptical orbit does not. Finally, we discuss how proper motion measurements of masers can distinguish between these geometries, and suggest that this effort should be focused on the 20 km s −1 and 50 km s −1 clouds and Sgr C.
Context. The temperature and density structure of molecular cloud cores are the most important physical quantities that determine the course of the protostellar collapse and the properties of the stars they form. Nevertheless, density profiles often rely either on the simplifying assumption of isothermality or on observationally poorly constrained model temperature profiles. The instruments of the Herschel satellite provide us for the first time with both the spectral coverage and the spatial resolution that is needed to directly measure the dust temperature structure of nearby molecular cloud cores. Aims. With the aim of better constraining the initial physical conditions in molecular cloud cores at the onset of protostellar collapse, in particular of measuring their temperature structure, we initiated the guaranteed time key project (GTKP) "The Earliest Phases of Star Formation" (EPoS) with the Herschel satellite. This paper gives an overview of the low-mass sources in the EPoS project, the Herschel and complementary ground-based observations, our analysis method, and the initial results of the survey. Methods. We study the thermal dust emission of 12 previously well-characterized, isolated, nearby globules using FIR and submm continuum maps at up to eight wavelengths between 100 μm and 1.2 mm. Our sample contains both globules with starless cores and embedded protostars at different early evolutionary stages. The dust emission maps are used to extract spatially resolved SEDs, which are then fit independently with modified blackbody curves to obtain line-of-sight-averaged dust temperature and column density maps. Results. We find that the thermal structure of all globules (mean mass 7 M ) is dominated by external heating from the interstellar radiation field and moderate shielding by thin extended halos. All globules have warm outer envelopes (14-20 K) and colder dense interiors (8-12 K) with column densities of a few 10 22 cm −2 . The protostars embedded in some of the globules raise the local temperature of the dense cores only within radii out to about 5000 AU, but do not significantly affect the overall thermal balance of the globules. Five out of the six starless cores in the sample are gravitationally bound and approximately thermally stabilized. The starless core in CB 244 is found to be supercritical and is speculated to be on the verge of collapse. For the first time, we can now also include externally heated starless cores in the L smm /L bol vs. T bol diagram and find that T bol < 25 K seems to be a robust criterion to distinguish starless from protostellar cores, including those that only have an embedded very low-luminosity object.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.