In this paper, the flutter characteristics of sandwich panels with carbon nanotube (CNT) reinforced face sheets are investigated using QUAD-8 shear flexible element developed based on higher-order structural theory. The formulation accounts for the realistic variation of the displacements through the thickness, the possible discontinuity in the slope at the interface, and the thickness stretch affecting the transverse deflection. The inplane and rotary inertia terms are also included in the formulation. The first-order high Mach number approximation to linear potential flow theory is employed for evaluating the aerodynamic pressure. The solutions of the complex eigenvalue problem, developed based on Lagrange's equation of motion are obtained using the standard method for finding the eigenvalues. The accuracy of the present formulation is demonstrated considering the problems for which solutions are available. A detailed numerical study is carried out to bring out the efficacy of the higher-order model over the first-order theory and also to examine the influence of the volume fraction of the CNT, core-to-face sheet thickness, the plate thickness and the aspect ratio, damping and the temperature on the flutter boundaries and the associated vibration modes.
Owing to their superior mechanical and thermal properties, carbon nanotube (CNT) reinforced composite materials have wide range of applications in various technical areas such as aerospace, automobile, chemical, structural and energy. In this paper, the nonlinear axisymmetric dynamic behavior of sandwich spherical and conical shells made up of CNT reinforced facesheets is studied. The shell is subjected to thermal loads and discretized with three-noded axisymmetric curved shell element based on field consistency approach. The in-plane and the rotary inertia effects are included within the transverse shear deformation theory in the element formulation. The present model is validated with the available analytical solutions from the literature. A detailed parametric study is carried out to showcase the effects of the shell geometry, the volume fraction of the CNT, the core-to-face sheet thickness and the environment temperature on the dynamic buckling thermal load of spherical caps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.