Here, we present a numerical study of the far field optical response of a monolayer composed by an hexagonal closed packed array of SiO2 spheres with a single Au NP at each interstitial position. The Optical Efficiencies, Reflection, Transmission and Absorption at normal incidence, were calculated using Discrete Dipole Approximation model extended to periodic targets. In order to consider different amounts of loads of Au NPs per unit of area in the monolayer, we have fixed the diameter of Au NPs (9 nm) and varied the diameter of the SiO2 spheres. The numerical calculations indicate that Au-SiO2 composite monolayers can absorb and scatter the incident electromagnetic wave, as the load of Au NPs increases the monolayer becomes less transparent to light and the spectra are red-shifted. The profile of the absorption spectrum of the Au-SiO2 composite monolayer is very similar to that of a Au NPs monolayer (composite monolayer without the Silica spheres) but less intense, presumably because the Silica spheres screen the coupling of the Localized Surface Plasmons of Au NPs.
Along this chapter, we probe that the discrete dipole approximation models fairly well the optical response of periodic systems. Herein, we use it to model the reflectance and transmittance, at normal incidence, of colloidal films made of SiO 2 spheres. As the thickness increases from 1 to 12 layers, the photonic band gap shifts to the blue tending to the value corresponding to a 3D opal, 442 nm. A film with more than eight layers resembles the bulk properties of a 3D opal. Our results are compared to a real sample. Besides, we show that taking advantage of the wide and asymmetrical absorbance spectrum of an opal with Au NPs is possible to identify the contribution of each component in the overall spectrum, through a deconvolution analysis. Finally, we present the electric field intensity as the content of metal NP increases in a monolayer. We consider NPs one order of magnitude smaller than the silica spheres, and then, 6, 9, and 17 NPs are hosted in the void. Similar average electric field intensities, about 11 times the incident intensity, are obtained with Au and Ag NPs. But, the spots with these intensities cover a bigger area with Ag NPs than with Au NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.