Orthogonal Frequency Division Multiplexing (OFDM) has become the most popular modulation echnique for high speed data transmission. But the great disadvantage of the OFDM technique is its high Peak to Average Power Ratio (PAPR). In this paper, the Selected Mapping (SLM) technique and Clipping and Differential Scaling is applied to Space Frequency Block Coded (SFBC) OFDM systems to reduce the PAPR with Alamouti coding scheme. In SLM technique, different representations of OFDM symbols are generated by rotation of the original OFDM frame by different phase sequences, and the signal with minimum PAPR is selected and transmitted. To compensate for the effect of the phase rotation at the receiver, it is necessary to transmit the index of the selected phase sequence as side information (SI). Additionally, a suboptimum detection method that does not need SI is introduced at the receiver side. In Clipping and Differential Scaling technique, the amplitude of complex OFDM signal is clipped and then scaled in such a way so that the PAPR is reduced without causing much degradation in bit error rate (BER). The threshold values for clipping and scaling is determined using Monte Carlo Simulations. Simulation results show that the SLM method and Clipping and Scaling method effectively reduce the PAPR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.