The study examines condensation as a microclimate process. It focuses first on finding a reliable method for measuring condensation and then on testing a numerical model for predicting condensation rates. The study site is the Glowworm Cave, a heavily used tourist cave in New Zealand. Preservation of the cave and its management as a sustainable tourist resource are high priorities. Here, as in other caves, condensation in carbon dioxide enriched air can lead to corrosion of calcite features. Specially constructed electronic sensors for measuring on-going condensation, as well as evaporation of the condensate, are tested. Measurements of condensation made over a year are used to test a physical model of condensation in the cave defined as a function of the vapour gradient between the cave air and condensation surface and a convection transfer coefficient. The results show that the amount and rate of condensation can be accurately measured and predicted. Air exchange with the outside can increase or decrease condensation rates, but the results show that the convection transfer coefficient remains constant. Temporal patterns of condensation in the cave are identified, as well as factors that influence these. Short-term and longer-term temporal variations of condensation rates are observed and patterns explained. Seasonal changes are large, with higher condensation rates occurring in the warmer months and lower rates during the cooler months. It is shown that controlling air exchange between the cave and the outside can influence condensation. This and other aspects of cave management are discussed.
The condensation/evaporation process is important in caves, especially in tourist caves where there is carbon dioxide enriched air caused by visitors. The cycle of condensation and evaporation of condensate is believed to enhance condensation corrosion. The problem is condensation is difficult to measure. This study addresses the problem and reports on a method for measuring and modelling condensation rates in a limestone cave. Electronic sensors for measuring condensation and evaporation of the condensate as part of a single continuous process of water vapour flux are tested and used to collect 12 months of data. The study site is the Glowworm tourist cave in New Zealand. The work describes an explanatory model of processes leading to condensation using data based on measurements of condensation and evaporation as part of a single continuous process of water vapour flux. The results show that the model works well. However, one of the most important messages from the research reported here is the introduction of the condensation sensor. The results show that condensation in caves can actually be measured and monitored, virtually in real time. In conjunction with the recent developments in data logging equipment, this opens exciting perspectives in cave climate studies, and, more generally, in hydrogeological studies in karst terrains.Keywords: condensation, cave microclimate, evaporation, management of show caves Abstract:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.