A signal transmitted in an Underwater Acoustic Communication (UAC) system operating in a shallow-water channel suffers from strong time dispersion due to multipath propagation. This causes the Inter-Symbol Interference (ISI) observed in the received signal, which significantly limits the communication system’s reliability and transmission rate. In such propagation conditions, the Direct-Sequence Spread Spectrum (DSSS) method is one of the solutions that make reliable data transmission possible. In systems with one-to-one communication, it ensures communication with a satisfactory Bit Error Rate (BER). Additionally, it makes it possible to implement the Code-Division Multiple Access (CDMA) protocol in underwater acoustic networks. This paper presents the results of simulation and experimental communication tests on a DSSS-based UAC system using three types of spreading sequence, namely m-sequences, Kasami codes and Gold codes, and occupying different bandwidths from 1 kHz to 8 kHz around a carrier frequency equal to 30 kHz. The UAC channel was simulated by impulse responses calculated by the virtual sources method and the UAC chanel models available in the Watermark simulator. The experimental tests were conducted in a model pool. Based on the obtained results, a transmission rate was estimated, which is possible to achieve in strong multipath propagation conditions, assuming reliability expressed as BER less than 0.001.
A data frame transmitted over the underwater acoustic channel usually begins with a preamble. Therefore, underwater communication systems have a dedicated receiver that constantly listens to the preamble signals. A receiver that is to work effectively in shallow waters must have solutions that effectively reduce the impact of the permanently occurring multipath propagation. The article presents a solution based on complementary broadband signals. Initial tests were carried out using the Watermark simulator to determine its reliability in such a difficult propagation environment. The results of experimental tests carried out in a model pool are also included. Details of the implementation of the wake-up receiver are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.