Ten microsatellite loci and a partial sequence of the COII mitochondrial gene were used to investigate genetic differentiation in B. terrestris, a bumble bee of interest for its high-value crop pollination. The analysis included eight populations from the European continent, five from Mediterranean islands (six subspecies altogether) and one from Tenerife (initially described as a colour form of B. terrestris but recently considered as a separate species, B. canariensis). Eight of the 10 microsatellite loci displayed high levels of polymorphism in most populations. In B. terrestris populations, the total number of alleles detected per polymorphic locus ranged from 3 to 16, with observed allelic diversity from 3.8 +/- 0.5 to 6.5 +/- 1.4 and average calculated heterozygosities from 0.41 +/- 0.09 to 0.65 +/- 0.07. B. canariensis showed a significantly lower average calculated heterozygosity (0.12 +/- 0.08) and observed allelic diversity (1.5 +/- 0.04) as compared to both continental and island populations of B. terrestris. No significant differentiation was found among populations of B. terrestris from the European continent. In contrast, island populations were all significantly and most of them strongly differentiated from continental populations. B. terrestris mitochondrial DNA is characterized by a low nucleotide diversity: 0.18% +/- 0.07%, 0.20% +/- 0.04% and 0.27% +/- 0.04% for the continental populations, the island populations and all populations together, respectively. The only haplotype found in the Tenerife population differs by a single nucleotide substitution from the most common continental haplotype of B. terrestris. This situation, identical to that of Tyrrhenian islands populations and quite different from that of B. lucorum (15 substitutions between terrestris and lucorum mtDNA) casts doubts on the species status of B. canariensis. The large genetic distance between the Tenerife and B. terrestris populations estimated from microsatellite data result, most probably, from a severe bottleneck in the Canary island population. Microsatellite and mitochondrial DNA data call for the protection of the island populations of B. terrestris against importation of bumble bees of foreign origin which are used as crop pollinators.
Highly variable microsatellites enabled a precise assessment of the number of queen matings in the colonies of five bumble bee species. Fifteen of the sixteen microsatellites initially cloned from B. terrestris had flanking regions similar enough to allow PCR amplification on the other Bombus species analysed. The microsatellites selected for intracolony study (four per species) were characterized by a high heterozygosity (0.58-0.93) and a large number of alleles (3-18) in the local populations from which the colonies originated. A single male appeared to have inseminated the queens in the colonies of four species, B. terrestris, B. lucorum, B. lapidarius and B. pratorum, which belong to three subgenera, whereas two of the three analysed colonies of B. hypnorum were polyandrous (minimum number of two and four patrilines, respectively).
The pierid butterflies Pontia daplidice and P. edusa, parapatrically distributed in southern Europe, have very similar morphologies and life histories, but show fixed differences at four allozyme markers. We sampled these allozymes in a 28-population transect north of Genoa in Italy, through the hybrid zone where these taxa meet. We used the numerical techniques developed for hybrid zone analysis to study the patterns of genetic differentiation and their underlying evolutionary causes. The hybrid zone is characterized by a very short and steep central region, flanked by broad tails of introgression extended up to 100 km in either direction. From mean two-locus disequilibium of D = 0.148 (maximum-likelihood two-unit support limits 0.139-0.153), and after accounting for minor differences in the center locations of the single-locus clines, which act to bias the dispersal estimate, we estimated a dispersal rate of a = 4.4 (3.7-5.5) km/gen 1/2. The effective selection needed to maintain the steep central portion is strong, 0.47 -s s' :s; 0.64, when combined over potential intrinsic (genetic background) and extrinsic (ecological) sources of selection. The clines in allozyme loci showed variation that was significantly different between the most divergent shapes, and the differences are attributable to different degrees of introgression on the edusa side of the zone. The average selection acting on individual allozyme loci was high at s, = 1.5%, but because of the narrowness of the central region of the cline, we suspect that this estimate is somewhat biased by selection on loci closely linked to the allozyme markers. A common question for taxa that show fixed allozyme differences in para patry is whether or not they are genetically isolated. A fairly general measure of genetic isolation across hybrid zones is the time, T, that it takes a neutral allele to cross the hybrid zone and recombine into the opposite genetic background, given by T = (13/ rr)2, where 13 is the barrier strength of the hybrid zone. Genetic isolation in the Pontia zone is weak, with T = 25 generations for most allozyme markers. By this measure, populations of daplidice and edusa on opposite sides of the hybrid zone share more identical-by-descent alleles than do populations of phenotypically pure daplidice in, say, France and Morocco. Accordingly, we think it best for systematists to consider edusa as a well-marked subspecies of P. daplidice.
In the Doubs River (Rh6ne drainage) two distinct brown trout (S. tnrtta) phenotypes are observed. One phenotype is locally called Doubs trout and is characterized by four black stripes on the sides, similar to perch (Perca fluviatilis L.) and the other i s the common phenotype of the fluviatile ecotype of brown trout, Salmo tnrtti f. firio. Protein data for three samples from the Doubs show that the Doubs trout belongs to the Mediterranean population group of brown trout, whereas the fario phenotype originates from stocking with hatchery strains of Atlantic basin origin. The two forms, however, do not hybridize freely. This is indicated by considerable gametic phase disequilibrium between alleles of hatchery and Doubs trout at one sampling site, and by lack of intermediate genotypes and phenotypes at another sampling site. The introgression patterns observed at the two sites suggest that differences in local habitat conditions can affect the degree of hybridization and introgression.
Identité et variabilité des mâles de bourdons du genre Bombus Latreille sensu stricto en Europe occidentale et centrale (Hymenoptera, Apidae, Bombinae) par
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.