Context. The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near-and mid-infrared studies. Aims. High angular resolution observations of the cold outer disk are limited; we used ALMA to attempt a first survey of young brown dwarfs in the ρ Oph star-forming region. Methods. All 17 young brown dwarfs in our sample were observed at 890 µm in the continuum at ∼ 0. 5 angular resolution. The sensitivity of our observations was chosen to detect ∼ 0.5 M ⊕ of dust. Results. We detect continuum emission in 11 disks (∼ 65% of the total), and the estimated mass of dust in the detected disks ranges from ∼ 0.5 to ∼ 6 M ⊕ . These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supraJupiter mass companions found around some brown dwarfs are probably the result of a binary system formation. We find evidence that the two brightest disks in ρ Oph have sharp outer edges at R < ∼ 25 AU, in contrast to disks around Taurus brown dwarfs. This difference may suggest that the different environment in ρ Oph may lead to significant differences in disk properties. A comparison of the M disk /M * ratio for brown dwarf and solar-mass systems also shows a possible deficit of mass in brown dwarfs, which could support the evidence for dynamical truncation of disks in the substellar regime. These findings are still tentative and need to be put on firmer grounds by studying the gaseous disks around brown dwarfs and by performing a more systematic and unbiased survey of the disk population around the more massive stars.
We analyze results from the first eighteen months of monthly sub-mm monitoring of eight star-forming regions in the JCMT Transient Survey. In our search for stochastic variability in 1643 bright peaks, only the previously identified source, EC 53, shows behavior well above the expected measurement uncertainty. Another four sources, two disks and two protostars, show moderately-enhanced standard deviations in brightness, as expected for stochastic variables. For the two protostars, this apparent variability is the result of single epochs that are much brighter than the mean. In our search for secular brightness variations that are linear in time, we measure the fractional brightness change per year for 150 bright peaks, fifty of which are protostellar. The ensemble distribution of slopes is well fit by a normal distribution with σ ∼ 0.023. Most sources are not rapidly brightening or fading in the sub-mm. Comparison against time-randomized realizations shows that the width of the distribution is dominated by the uncertainty in the individual brightness measurements of the sources. A toy model for secular variability reveals that an underlying Gaussian distribution of linear fractional brightness change σ = 0.005 would be unobservable in the present sample, whereas an underlying distribution with σ = 0.02 is ruled out. Five protostellar sources, 10% of the protostellar sample, are found to have robust secular measures deviating from a constant flux. The sensitivity to secular brightness variations will improve significantly with a larger time sample, with a factor of two improvement expected by the conclusion of our 36-month survey.
We present new 890 µm continuum ALMA observations of 5 brown dwarfs (BDs) with infrared excess in Lupus I and III -which, in combination with 4 BDs previously observed, allowed us to study the mm properties of the full known BD disk population of one star-forming region. Emission is detected in 5 out of the 9 BD disks. Dust disk mass, brightness profiles and characteristic sizes of the BD population are inferred from continuum flux and modeling of the observations. Only one source is marginally resolved, allowing for the determination of its disk characteristic size. We conduct a demographic comparison between the properties of disks around BDs and stars in Lupus. Due to the small sample size, we cannot confirm or disprove if the disk mass over stellar mass ratio drops for BDs, as suggested for Ophiuchus. Nevertheless, we find that all detected BD disks have an estimated dust mass between 0.2 and 3.2 M C ; these results suggest that the measured solid masses in BD disks can not explain the observed exoplanet population, analogous to earlier findings on disks around more massive stars. Combined with the low estimated accretion rates, and assuming that the mm-continuum emission is a reliable proxy for the total disk mass, we derive ratios of 9 M acc {M disk significantly lower than in disks around more massive stars. If confirmed with more accurate measurements of disk gas masses, this result could imply a qualitatively different relationship between disk masses and inward gas transport in BD disks.
Using light curves obtained by the K2 mission, we study the relation between stellar rotation and magnetic activity with special focus on stellar flares. Our sample comprises 56 bright and nearby M dwarfs observed by K2 during campaigns C0-C18 in long-and short-cadence mode. We derive rotation periods for 46 M dwarfs and measure photometric activity indicators such as amplitude of the rotational signal, standard deviation of the light curves, and the basic flare properties (flare rate, flare energy, flare duration, and flare amplitude). We found 1662 short-cadence flares, 363 of which have a long-cadence counterpart with flare energies of up to 5.6 · 10 34 erg. The flare amplitude, duration, and frequency derived from the short-cadence light curves differ significantly from those derived from the long-cadence data. The analysis of the short-cadence light curves results in a flare rate that is 4.6 times higher than the long-cadence data. We confirm the abrupt change in activity level in the rotation-activity relation at a critical period of ∼10 d when photometric activity diagnostics are used. This change is most drastic in the flare duration and frequency for short-cadence data. Our flare studies revealed that the highest flare rates are not found among the fastest rotators and that stars with the highest flare rates do not show the most energetic flares. We found that the superflare frequency (E ≥ 5 · 10 34 erg) for the fast-rotating M stars is twice higher than for solar like stars in the same period range. By fitting the cumulative FFD, we derived a power-law index of α = 1.84 ± 0.14, consistent with previous M dwarf studies and the value found for the Sun.
While brown dwarfs show similarities to stars early in their lives, their spin evolutions are much more akin to those of planets. We have used light curves from the K2 mission to measure new rotation periods for 18 young brown dwarfs in the Taurus star-forming region. Our sample spans masses from 0.02 to 0.08 M e and has been characterized extensively in the past. To search for periods, we utilize three different methods (autocorrelation, periodogram, Gaussian processes). The median period for brown dwarfs with disks is twice as long as for those without (3.1 versus 1.6 days), a signature of rotational braking by the disk, albeit with small numbers. With an overall median period of 1.9 days, brown dwarfs in Taurus rotate slower than their counterparts in somewhat older (3-10 Myr) star-forming regions, consistent with spin-up of the latter due to contraction and angular momentum conservation, a clear sign that disk braking overall is inefficient and/or temporary in this mass domain. We confirm the presence of a linear increase of the typical rotation period as a function of mass in the substellar regime. The rotational velocities, when calculated forward to the age of the solar system, assuming angular momentum conservation, fit the known spin-mass relation for solar system planets and extra-solar planetary-mass objects. This spin-mass trend holds over six orders of magnitude in mass, including objects from several different formation paths. Our result implies that brown dwarfs by and large retain their primordial angular momentum through the first few Myr of their evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.