Engine blocks of modern passenger car engines are generally made of light metal alloys, mostly hypoeutectic AlSi-alloys. Due to their low hardness, these alloys do not meet the tribological requirements of the system cylinder running surface-piston rings-lubricating oil. In order to provide a suitable cylinder running surface, nowadays cylinder liners made of gray cast iron are pressed in or cast into the engine block. A newer approach is to apply thermal spray coatings onto the cylinder bore walls. Due to the geometric conditions, the coatings are applied with specifically designed internal diameter thermal spray systems. With these processes a broad variety of feedstock can be applied, whereas mostly lowalloyed carbon steel feedstock is being used for this application. In the context of this work, an iron-based wire feedstock has been developed, which leads to a nanocrystalline coating. The application of this material was carried out with the Plasma Transferred Wire Arc system. AlMgSi0.5 liners were used as substrates. The coating microstructure and the properties of the coatings were analyzed.
(ASTM G65 and ASTM G75). Thereby the influence of newly developed HVOF torch combustion chambers with reduced critical diameter and divergent expansion nozzles that both permit increased combustion gas and therefore also particle velocities on microstructure and wear resistance of the produced coatings is studied. While there is no improvement of wear resistance for hard alloy coatings compared to mild steel substrates for the specific tribological boundary conditions of these tests, especially the carbide reinforced coatings permit improvement by more than one order of magnitude in ASTM G65 tests and even more than two orders of magnitude in ASTM G75 tests. Also, for both types of tribological load HVOF coatings with WC as reinforcing phase are clearly superior to electrolytically deposited hard chromium coatings. Both use of the combustion chamber with reduced critical diameter and the expansion nozzles with divergent contour result in improved wear resistance of the thereby produced coatings. The specific wear mechanisms are deduced based on SEM examination of worn specimen surfaces.
Detailed studies concerning influence of microstructural features on the resistance of different thermal spray coatings against dry abrasive wear (Taber Abraser test) and oscillating wear (ball on disk configuration) are carried out. Besides WC and Cr3C2 based cermet coatings produced by a triple cathode APS system with axial powder feed and by HVOF systems using kerosene fuel also APS Cr2O3 and Al2O3 coatings are tested. At the example of WC/CoCr coatings the influence of carbide size and content, powder size fraction, powder manufacturing process and spraying process parameters is studied. For APS Al2O3 investigations concerning the influence of powder feed rate and nozzle geometry of single cathode APS torch are imparted. Oscillating wear tests are performed using alumina and hardened steel balls as counter bodies. Coatings are characterized concerning phase composition and residual stress state by means of XRD. Additionally microstructure is evaluated by SEM investigations and micro hardness is measured. Guidelines for manufacturing of thermal spray coatings fitting the specific demands of the two applied wear conditions are deduced.
One of the main drivers in the automotive industry is the reduction in fuel consumptions and emissions. In order to achieve these goals, the weight of the engine block as well as the friction in the cylinder bore has to be optimized. This paper describes the FORD PTWA (Plasma Transferred Wire Arc) thermal spray process that protects the aluminum cylinder bore surface against wear by a thermal spray coating. The PTWA technology was originally developed for the application in gasoline V8 engines and it will be shown in this paper how this process can be modified to apply nano-material to produce high-wear resistant, low-friction coatings for highly loaded engine blocks for future demands. A large German BMBF “Nanomobile” Research Program was started in 2005 with 13 partners (DaimlerChrysler, Opel, Porsche, Ford, Gehring, Federal Mogul, GTV Thermal Spray Systems, DURUM, RWTH University and other institutes) in order to develop next generation nano-material coatings for cylinder bores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.