In the aerospace field as well as in the stationary gas turbine field, thermally sprayed coatings are used to improve the surface properties of nickel-super-alloys materials. Coatings are commonly used as bond coat and antioxidation materials (mainly MCrAlY alloys) and as thermal barrier coatings (mainly yttria partially stabilized zirconia). The purpose of the current study was to assess the properties of thermally sprayed bond coat CoNiCrAlY alloys comparing the performance of three different techniques: vacuum plasma spray (VPS), high velocity oxygen fuel (HVOF), and axial plasma spray (AxPS). The quality of the deposited films has been assessed and compared from the point of view of microstructural (porosity, oxide concentration, unmelted particles presence) and mechanical (hardness) characteristics. The surface composition and morphology of the coatings were also determined. Specific efficiency tests were performed for the three examined technologies. The highest quality coatings are obtained by VPS, but also high velocity oxygen fuel and AxPS sprayed films have interesting properties, which can make their use interesting for some applications.
Thick thermal barrier coatings (TBCs), consisting of a CoNiCrAlY bond coat and yttria-partially stabilized zirconia top coat with different porosity values, were produced by air plasma spray (APS). The thermal fatigue resistance limit of the TBCs was tested by furnace cycling tests (FCT) according to the specifications of an original equipment manufacturer (OEM). The morphology, residual stresses, and micromechanical properties (microhardness, indentation fracture toughness) of the TBC systems before and after FCT were analyzed. The thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling; nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/top coat interface. The failure mechanism of thick TBCs was found to be similar to that of conventional thin TBC systems made by APS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.