Dimethyl sulfide (DMS) and its oxidation products, which have been proposed to provide a climate feedback mechanism by affecting aerosol and cloud radiative properties, were measured on board the Canadian Coast Guard ship Amundsen in sampling campaigns in the Arctic in the fall of 2007 and 2008. DMS flux was calculated based on the surface water measurements and yielded 0.1–2.6 μmol m−2 d−1 along the Northwest Passage in 2007 and 0.2–1.3 μmol m−2 d−1 along Baffin Bay in 2008. DMS oxidation products, sulfur dioxide (SO2), methane sulfonic acid (MSA), and sulfate in aerosols were also measured. The amounts of biogenic SO2 and sulfate were approximated using stable isotope apportionment techniques. Calculating the threshold amount of SO2 needed for significant new particle formation from the formulation by Pirjola et al. (1999), the study suggests that instances of elevated biogenic SO2 concentrations (between 8 and 9 September 2008) derived using conservative assumptions may have been sufficient to form new aerosols in clean air conditions in the Arctic region.
The influence of frost flowers and seawater brine on ion chemistry in snow, snowpack, ice cores, and aerosols is detected when a lower sulfate to sodium ratio than in seawater is present in polar regions. This evidence can be masked when large amounts of non-sea-salt sulfate are present from other sources such as biogenic and anthropogenic sulfate. Frost flower δ 34 S values were measured for the first time in frost flower sulfates and did not differ significantly from the sea salt δ 34 S values of +21‰. A method using stable isotopes is introduced to determine the limit of contributions from sea salt and sea ice sources (including frost flowers and brine) on sulfate concentrations in aerosol samples from Alert, Canada. Knowledge of the range of values of δ 34 S nss and the SO 4 /Na ratio found in sea ice sources (i.e., frost flowers) is used to quantitatively constrain the contributions from frost flowers and sea salt in the Arctic aerosol mass during the onset of winter in 2007 and 2008, allowing for quantification of non-sea-salt sulfate amounts during times when frost flowers are present. Frost flower and/or brine influence was found predominantly in the coarse-mode aerosols (>0.95 μm). This method to determine the contributions from sea salt and sea ice sources can be carried over to future studies with snow and ice cores.
The performance of the Weather Research and Forecasting (WRF) Model is evaluated in predicting the meteorological conditions over a complex open-pit mining facility in northern Canada in support of more accurate operational reporting of area-fugitive greenhouse gas emission fluxes from such facilities. WRF is studied in a series of sensitivity tests by varying topography, land use, and horizontal and vertical grid spacings to arrive at optimum configurations for reducing modeling biases in comparison with field meteorological observations. Overall, WRF shows a better performance when accounting for the mine topography and modified land use. As a result, the model biases reduce from 1.10 to 0.08 m s−1, from 1.04 to 0.50 m s−1, from 0.98 to 0.32 K, and from 45.7 to 17.3 W m−2, for near-surface wind speed, boundary layer wind speed, near-surface potential temperature, and turbulent sensible heat flux, respectively. Refining the model horizontal and vertical grid spacings results in bias reductions from 3.31 to 0.08 and from 0.80 to −0.11 m s−1 for near-surface and boundary layer wind speeds, respectively. The simulation results also agree with previous observations of meteorological effects on enclosed Earth depressions, characterized by formation of a cool pool of air, reduced wind speeds, and horizontal wind circulations at the bottom of the depression under thermally stable conditions. The results suggest that such configurations for WRF are necessary to arrive at more accurate meteorological predictions over complex open-pit mining terrains with similar features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.