Synaptophysin is a major glycoprotein of Mr approximately 38,000 (in deglycosylated form: Mr approximately 34,000) characteristic of a certain class of small (30‐80 nm diameter) neurosecretory vesicles, including presynaptic vesicles, but also vesicles of various neuroendocrine cells of both neuronal and epithelial phenotype. Using synaptophysin‐specific antibodies we have isolated cDNA clones from rat nervous tissue libraries, which identify an approximately 2.5‐kb mRNA in rat and human cells, including neuroendocrine tumours, that contains a reading frame for a polypeptide of 307 amino acids with a total mol. wt of 33 312. The deduced amino acid sequence, which was partly confirmed by comparison with sequences of two tryptic peptides obtained from purified synaptophysin, revealed four hydrophobic regions of 24 amino acids each, which are characterized, according to conformation prediction analyses, by marked alpha‐helicity. The sequence shows a single potential N‐glycosylation site, which is assigned to the vesicle interior, and a carboxy‐terminal tail of 89 amino acids which contains glycine‐rich tetrapeptide repeats, the epitope of monoclonal antibody SY38, and a number of collagenase‐sensitive sites accessible on the surface of the intact vesicles. These features suggest that the polypeptide spans the vesicle membrane four times, with both N and C termini located on the outer, i.e. cytoplasmic, surface of the vesicles.
The karyophilic protein N1 (590 amino acids) is an abundant soluble protein of the nuclei of Xenopus laevis oocytes where it forms defined complexes with histones H3 and H4. The amino acid sequence of this protein, as deduced from the cDNA, reveals a putative nuclear targeting signal as well as two acidic domains which are candidates for the interaction with histones. Using two different histone binding assays in vitro we have found that the deletion of the larger acidic domain reduces histone binding drastically to a residual value of approximately 15% of the complete molecule, whereas removal of the smaller acidic domain only slightly reduces histone complex formation in solution, but infers more effectively with binding to immobilized histones. In the primary structure of the protein both histone‐binding domains are distant from the conspicuous nuclear accumulation signal sequence (residues 531‐537) close to the carboxy terminus which is very similar to the SV40 large T‐antigen nuclear targeting sequence. Using a series of N1 mutants altered by deletions or point mutations we show that this signal is required but not sufficient for nuclear accumulation of protein N1. The presence of an additional, more distantly related signal sequence in position 544‐554 is also needed to achieve a level of nuclear uptake equivalent to that of the wild‐type protein. Results obtained with point mutations support the concept of two nuclear targeting sequences and emphasize the importance of specific lysine and arginine residues in these signal sequences.
High speed supernatants of Xenopus laevis oocyte nuclei efficiently assemble DNA into nucleosomes in vitro under physiological salt conditions. The assembly activity cofractionates with two histone complexes composed of the acidic protein N1/N2 in complex with histones H3 and H4, and nucleoplasmin in complex with histones H2B and H2A. Both histone complexes have been purified and their nucleosome assembly activities have been analysed separately and in combination. While the histones from the N1/N2 complexes are efficiently transferred to DNA and induce supercoils into relaxed circular plasmid DNA, the nucleoplasmin complexes show no supercoil induction, but can also transfer their histones to DNA. In combination, the complexes act synergistically in supercoil induction thereby increasing the velocity and the number of supercoils induced. Electron microscopic analysis of the reaction products shows fully packaged nucleoprotein structures with the typical nucleosomal appearance resulting in a compaction ratio of 2.8 under low ionic strength conditions. The high mobility group protein HMG‐1, which is also present in the soluble nuclear homogenate from X. laevis oocytes, is not required for nucleosome core assembly. Fractionation experiments show that the synergistic effect in the supercoiling reaction can be exerted by histones H3 and H4 bound to DNA and the nucleoplasmin complexes alone. This indicates that it is not the synchronous action of both complexes which is required for nucleosome assembly, but that their cooperative action can be resolved into two steps: deposition of H3 and H4 from the N1/N2 complexes onto the DNA and completion of nucleosome core formation by addition of H2B and H2A from the nucleoplasmin complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.