Meridional flow is thought to play a very important role in the dynamics of the solar convection zone; however, because of its relatively small amplitude, precisely measuring it poses a significant challenge. Here we present a complete time-distance helioseismic analysis of about 2 years of ground-based Global Oscillation Network Group (GONG) Doppler data to retrieve the meridional circulation profile for modest latitudes in an attempt to corroborate results from other studies. We use an empirical correction to the travel times due to an unknown centerto-limb systematic effect. The helioseismic inversion procedure is first tested and reasonably validated on artificial data from a large-scale numerical simulation followed by a test to broadly recover the solar differential rotation found from global seismology. From GONG data, we measure poleward photospheric flows at all latitudes with properties that are comparable with earlier studies and a shallow equatorward flow about 65 Mm beneath the surface, in agreement with recent findings from Helioseismic and Magnetic Imager (HMI) data. No strong evidence of multiple circulation cells in depth or latitude is found, yet the whole phase space has not yet been explored. Tests of mass flux conservation are then carried out on the inferred GONG and HMI flows and compared to a fiducial numerical baseline from models, and we find that the continuity equation is poorly satisfied. While the two disparate data sets do give similar results for about the outer 15% of the interior radius, the total inverted circulation pattern appears to be unphysical in terms of mass conservation when interpreted over modest time scales. We can likely attribute this to both the influence of realization noise and subtle effects in the data and measurement procedure.
Aims. We studied the rotational properties of the dwarf planet Makemake. Methods. The photometric observations were carried out at different telescopes between 2006 and 2017. Most of the measurements were acquired in BVRI broad-band filters of a standard Johnson-Cousins photometric system. Results. We found that Makemake rotates more slowly than was previously reported. A possible lightcurve asymmetry suggests a double-peaked period of P = 22.8266±0.0001 h. A small peak-to-peak lightcurve amplitude in R-filter A = 0.032±0.005 mag implies an almost spherical shape or near pole-on orientation. We also measured BVRI colours and the R-filter phase-angle slope and revised the absolute magnitudes. The absolute magnitude of Makemake has remained unchanged since its discovery in 2005. No direct evidence of a newly discovered satellite was found in our photometric data; however, we discuss the possible existence of another larger satellite.
Context. The near-Earth asteroid 3200 Phaethon (1983 TB) is an attractive object not only from a scientific viewpoint but also because of JAXA's DESTINY +⋆⋆ target. The rotational lightcurve and spin properties were investigated based on the data obtained in the ground-based observation campaign of Phaethon.Aims. We aim to refine the lightcurves and shape model of Phaethon using all available lightcurve datasets obtained via optical observation, as well as our time-series observation data from the 2017 apparition.Methods. Using eight 1-2-m telescopes and an optical imager, we acquired the optical lightcurves and derived the spin parameters of Phaethon. We applied the lightcurve inversion method and SAGE (Shaping Asteroids with Genetic Evolution) algorithm to deduce the convex and nonconvex shape model and pole orientations.Results. We analysed the optical lightcurve of Phaethon and derived a synodic and a sidereal rotational periods of 3.6039 h, with an axis ratio of a/b = 1.07. The ecliptic longitude (λ p ) and latitude (β p ) of the pole orientation were determined as (308, -52) and (322, -40) via two independent methods. A non-convex model from the SAGE method, which exhibits a concavity feature, is also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.