We have studied the effect of the insertion of spin-labeled molecules n-doxyl-stearic acid (n-SASL, n = 5, 12, 16) on the structure and dynamics of a model lipid bilayer in gel-like phases using molecular dynamics simulations. We have studied the atomic density depth profiles and configurations of the labeled molecules in a host hydrated stearic acid bilayer system. We have found that the 5-SASL label positions its paramagnetic group at the water-lipid interface, and its polar head builds H bonds to neighboring lipids and to the solvent. 16-SASL positions its paramagnetic group at the lipid-lipid interface. The 12-SASL label presents two configurations at high lateral pressure. In one configuration, the doxyl ring lays at the lipid-lipid interface, shifting its polar head toward the bilayer center. The other equilibrium configuration of 12-SASL presents its paramagnetic group laying in the center of the compact hydrophobic region of the layer (erected configuration). It was determined that the coexistence of these two configurations is governed by the polar head-water interaction. We have found that the insertion of the labeled molecules at the concentrations used in the present work (0.36 mol %) do not perturb global properties like area per lipid, tilt angle, or order parameters. Nevertheless, there are local perturbations of the host system that are confined to a 10 angstroms neighboring shell around the spin label molecule. To study the interactions that determine the position of the labeled molecules in the bilayer, we performed simulations at different lateral pressures, which allowed us to extract important conclusions.
Detergents are essential tools to study biological membranes, and they are frequently used to solubilize lipids and integral membrane proteins. Particularly the nondenaturing zwitterionic detergent usually named CHAPS was designed for membrane biochemistry and integrates the characteristics of the sulfobetaine-type detergents and bile salts. Despite the available experimental data little is known about the molecular structure of its micelles. In this work, molecular dynamics simulations were performed to study the aggregation in micelles of several numbers of CHAPS (≤ 18) starting from a homogeneous water dilution. The force field parameters to describe the interactions of the molecule were developed and validated. After 50 ns of simulation almost all the systems result in the formation of stable micelles. The molecular shape (gyration radii, volume, surface) and the molecular structure (RDF, salt bridges, H-bonds, SAS) of the micelles were characterized. It was found that the main interactions that lead to the stability of the micelles are the electrostatic ones among the polar groups of the tails and the OH's from the ring moiety. Unlike micelles of other compounds, CHAPS show a grainlike heterogeneity with hydrophobic micropockets. The results are in complete agreement with the available experimental information from NMR, TEM, and SAXS studies, allowing the modeling of the molecular structure of CHAPS micelles. Finally, we hope that the new force field parameters for this detergent will be a significant contribution to the knowledge of such an interesting molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.