The apparent mass (AM) responses of human body seated on elastic seat, without and with a vertical back support, are measured using a seat pressure sensing mat under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s(2) rms acceleration) in 0.50-20 Hz frequency range. The responses were also measured with a rigid seat using the pressure mat and a force plate in order to examine the validity of the pressure mat. The pressure mat resulted in considerably lower AM magnitudes compared to the force plate. A correction function was proposed and applied, which resulted in comparable AM from both measurement systems for the rigid seat. The correction function was subsequently applied to derive AM of subjects seated on elastic seat. The responses revealed lower peak magnitude and corresponding frequency compared to those measured with rigid seat, irrespective of back support and excitation considered.
The effects of visco-elastic properties of the body-seat interface on the apparent mass responses of the seated body are measured under vertical vibration. The results show considerable effects of the coupling stiffness on the seated body apparent mass, apart from those of excitation magnitude and back support.
In this study, the biodynamic responses to vertical vibration are investigated in terms of seat-to-head vibration transmissibility (STHT) to study the effects of gender and eleven different anthropometric parameters on the STHT responses in the vertical and fore-aft directions. The STHT response of 31 male and 27 female human subjects were measured under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s 2 rms acceleration) in the 0.50 to 20 Hz range, while seated without a back support and against a vertical back support with hands on a steering wheel. The results showed that the vertical and fore-aft STHT responses of the two genders were distinctly different. The primary resonance frequency of the male subjects was higher than the female subjects, while the peak magnitudes were comparable. The male subjects showed relatively greater softening effect, i.e. decrease in the primary resonance frequency with increase in excitation magnitude, as compared to the female subjects, irrespective of the sitting condition. The body mass revealed strong effect on both the male and female STHT responses. The primary resonance frequency of heavier subjects was lower than that of the lighter subjects, while the peak magnitude was higher for the heavier subjects. The male subjects showed significantly higher primary resonance frequency than the female subjects, even when comparable body mass, BMI and lean body mass were considered. The vertical STHT response of the two genders with same body fat mass was very similar for the sitting and excitation conditions considered in the study, particularly up to 10 Hz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.