Study of half-metallicity has been performed in a new series of Mn2ScZ (Z = Si, Ge and Sn) full Heusler alloys using density functional theory with the calculation and implementation of a Hubbard correction term (U).
We report the electronic, optical, and thermoelectric properties of full-Heusler alloy Fe2VAl with Fe antisite doping (Fe2+xV1−xAl) as obtained from the first-principles Tran-Blaha modified Becke-Johnson potential. The results are discussed in relation to the available experimental data and show good agreements for the band gap, magnetic moment, and optical spectra. Exploring our transport data for thermoelectric applicability suggest that Fe2+xV1−xAl is a good candidate with a high figure of merit (ZT) 0.75(0.65) for x = 0.25(0.50) at room temperature.
A density functional theory (DFT) approach employing generalized gradient approximation (GGA) and the modified Becke Johnson (TB-mBJ) potential has been used to study the electronic and thermoelectric (TE) properties of ZrxHf1−x−yTayNiSn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.