The Born-Oppenheimer potential energy surface(s) underlies theoretical and computational chemistry (whether one considers a single or multiply coupled surfaces). The recent progress in representing these surfaces, rigorously obtained from electronic structure calculations, is the focus of this Perspective. Examples of potentials of complex molecules, namely, CH 3 CHO, CH 5 þ , and H 5 þ , and molecular complexes, namely, water clusters, are given.
Aims. We describe an ab initio-based numerical method of obtaining infrared spectroscopic data (line list) of polyatomic molecules that allows calculation of complete sets of lines for temperatures up to several thousand Kelvin. While the main focus is on completeness and consistency, not spectroscopic accuracy, the approach is in principle "exact" for line positions and, although not exact for line strengths, of sufficient accuracy to be of value, especially in wavelength regions where there are gaps in reliable experimental data. Methods. Global potential energy and dipole moment hypersurfaces are fitted to the results of ab initio electronic structure calculations. The MULTIMODE software is then used to obtain rovibrational energy levels and dipole transition matrix elements. This information is used to calculate a complete set of Einstein coefficients of spontaneous emission A i j . Results. The method is applied to obtain a spectroscopic database for methane containing over 1.4 million lines up to an upper state energy of 6200 cm −1 (∼9000 K). The emission spectrum of CH 4 at 1000 K is calculated with the complete set of Einstein coefficients and compared with the one obtained from the HITRAN database. Gaps in the database are realistically filled in by the calculated spectrum. Conclusions. Consistent and complete databases are important for astrophysical applications. Databases obtained by the method described here fulfill this requirement and are sufficiently accurate for astrophysical applications such as model atmosphere calculations and the corresponding synthetic spectra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.