Electroencephalogram (EEG) comprises valuable details related to the different physiological state of the brain. In this paper, a framework is offered for detecting the epileptic seizures from EEG data recorded from normal subjects and epileptic patients. This framework is based on a discrete wavelet transform (DWT) analysis of EEG signals using linear and nonlinear classifiers. The performance of the 14 different combinations of two-class epilepsy detection is studied using naïve Bayes (NB) and k-nearest neighbor (k-NN) classifiers for the derived statistical features from DWT. It has been found that the NB classifier performs better and shows an accuracy of 100% for the individual and combined statistical features derived from the DWT values of normal eyes open and epileptic EEG data provided by the University of Bonn, Germany. It has been found that the computation time of NB classifier is lesser than k-NN to provide better accuracy. So, the detection of an epileptic seizure based on DWT statistical features using NB classifiers is more suitable in real time for a reliable, automatic epileptic seizure detection system to enhance the patient's care and the quality of life.INDEX TERMS Electroencephalograms (EEG), epilepsy, discrete wavelet transform (DWT), naïve Bayes (NB), k-nearest neighbor (k-NN).
Over several years, research had been conducted for the detection of epileptic seizures to support an automatic diagnosis system to comfort the clinicians’ encumbrance. In this regard, a number of research papers have been published for the identification of epileptic seizures. A thorough review of all these papers is required. So, an attempt has been made to review on the pattern detection methods for epilepsy seizure detection from EEG signals. More than 150 research papers have been discussed to determine the techniques for detecting epileptic seizures. Further, the literature review confirms that the pattern recognition techniques required to detect epileptic seizures varies across the electroencephalogram (EEG) datasets of different conditions. This is mostly owing to the fact that EEG detected under different conditions have different characteristics. This consecutively necessitates the identification of the pattern recognition technique to efficiently differentiate EEG epileptic data from the EEG data of various conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.