Knowledge of the mean-free-path distribution of heat-carrying phonons is key to understanding phononmediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning a wide thickness range can be used to characterize how bulk thermal conductivity is distributed over phonon mean free paths. A noncontact transient thermal grating technique was used to measure the thermal conductivity of suspended Si membranes ranging from 15-1500 nm in thickness. A decrease in the thermal conductivity from 74-13% of the bulk value is observed over this thickness range, which is attributed to diffuse phonon boundary scattering. Due to the well-defined relation between the membrane thickness and phonon mean-free-path suppression, combined with the range and accuracy of the measurements, we can reconstruct the bulk thermal conductivity accumulation vs. phonon mean free path, and compare with theoretical models.
A detailed understanding of the connections of fabrication and processing to structural and thermal properties of low-dimensional nanostructures is essential to design materials and devices for phononics, nanoscale thermal management, and thermoelectric applications. Silicon provides an ideal platform to study the relations between structure and heat transport since its thermal conductivity can be tuned over 2 orders of magnitude by nanostructuring. Combining realistic atomistic modeling and experiments, we unravel the origin of the thermal conductivity reduction in ultrathin suspended silicon membranes, down to a thickness of 4 nm. Heat transport is mostly controlled by surface scattering: rough layers of native oxide at surfaces limit the mean free path of thermal phonons below 100 nm. Removing the oxide layers by chemical processing allows us to tune the thermal conductivity over 1 order of magnitude. Our results guide materials design for future phononic applications, setting the length scale at which nanostructuring affects thermal phonons most effectively.
We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultra-thin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ∼ 4.7 ns to 5 ps with decreasing membrane thickness from ∼ 194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.Mechanical and acoustic properties in the nanoscale are receiving increasing attention as they are key properties affecting the limits of ultrasensitive detectors of force [1], mass [2,3], charge [4,5] and spin [6], influencing platforms for biosensing [7] and the investigation of quantum behaviour in extended objects [8]. In particular, phonon lifetimes influence the achievable mechanical quality (Q) -factors in nanomechanical resonators, which often limit device performance [9]. Moreover, they are necessary input parameters for accurate calculations of nanoscale thermal transport, with high-impact applications such as heat management in nanoelectronics [10] and the engineering of novel thermoelectric materials [11]. Despite their importance, phonon lifetimes are perhaps the least well known of all phonon properties due to the challenges associated with their quantitative determination and theoretical modelling. Even though silicon is the most important material for nanoelectronics, MEMS and NEMS, there are few experimental reports of direct measurements of phonon lifetimes in the gigahertz to terahertz range [12] and for all materials open questions remain about the relative contributions of intrinsic and extrinsic scattering processes at high frequencies in both bulk and nanoscale structures [9,[13][14][15][16]. Recent experimental investigations of phonons in superlattice cavities with frequencies of around 1 THz have suggested that lifetimes of high-frequency phonons could be limited by an average interface roughness of just 0.06 nm [17]. On the other hand, phonon wavepackets experiments in bulk silicon with frequencies up to approximately 100 GHz were analysed with a simplified Akhiezer relaxation damping model [12,18] of intrinsic scattering, using an average lifetime of high-frequency thermal phonons of 17 ps. Other intrinsic damping models include clamping losses [19], thermoelastic dissipation [20] and three-phonon interactions [21], which predict a different behaviour depending on the frequency and temperature regimes. In this context, generation and detection of coherent acoustic phonons at high frequencies in different materials and nanostructures is an ideal method to obtain quantitative information on phonon lifetimes and compare with the main theoretical models.Here we use free-standing single-crystalline ...
Abstract. Understanding and controlling vibrations in condensed matter is emerging as an essential necessity both at fundamental level and for the development of a broad variety of technological applications. Intelligent design of the band structure and transport properties of phonons at the nanoscale and of their interactions with electrons and photons impact the efficiency of nanoelectronic systems and thermoelectric materials, permit the exploration of quantum phenomena with micro-and nanoscale resonators, and provide new tools for spectroscopy and imaging. In this colloquium we assess the state of the art of nanophononics, describing the recent achievements and the open challenges in nanoscale heat transport, coherent phonon generation and exploitation, and in nano-and optomechanics. We also underline the links among the diverse communities involved in the study of nanoscale phonons, pointing out the common goals and opportunities.
We report on the reduction of the thermal conductivity in ultra-thin suspended Si membranes with high crystalline quality. A series of membranes with thicknesses ranging from 9 nm to 1.5 μm was investigated using Raman thermometry, a novel contactless technique for thermal conductivity determination. A systematic decrease in the thermal conductivity was observed as reducing the thickness, which is explained using the Fuchs-Sondheimer model through the influence of phonon boundary scattering at the surfaces. The thermal conductivity of the thinnest membrane with d = 9 nm resulted in (9 ± 2) W/mK, thus approaching the amorphous limit but still maintaining a high crystalline quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.