We study a merger of the NGC 4839 group with the Coma cluster using X-ray observations from the XMM-Newton and Chandra telescopes. X-ray data show two prominent features: (i) a long (∼600 kpc in projection) and bent tail of cool gas trailing (towards south-west) the optical center of NGC 4839, and ii) a 'sheath' region of enhanced X-ray surface brightness enveloping the group, which is due to hotter gas. While at first glance the X-ray images suggest that we are witnessing the first infall of NGC 4839 into the Coma cluster core, we argue that a post-merger scenario provides a better explanation of the observed features and illustrate this with a series of numerical simulations. In this scenario, the tail is formed when the group, initially moving to the south-west, reverses its radial velocity after crossing the apocenter, the ram pressure ceases and the ram-pressure-displaced gas falls back toward the center of the group and overshoots it. Shortly after the apocenter passage, the optical galaxy, dark matter and gaseous core move in a north-east direction, while the displaced gas continues moving to the south-west. The 'sheath' is explained as being due to interaction of the re-infalling group with its own tail of stripped gas mixed with the Coma gas. In this scenario, the shock, driven by the group before reaching the apocenter, has already detached from the group and would be located close to the famous relic to the south-west of the Coma cluster.
We present results of a joint Chandra and XMM-Newton analysis of the Fornax Cluster, the nearest galaxy cluster in the southern sky. Signatures of merger-induced gas sloshing can be seen in the X-ray image. We identify four sloshing cold fronts in the intracluster medium, residing at radii of 3 kpc (west), 10 kpc (northeast), 30 kpc (southwest) and 200 kpc (east). Despite spanning over two orders of magnitude in radius, all four cold fronts fall onto the same spiral pattern that wraps around the BCG NGC 1399, likely all initiated by the infall of NGC 1404. The most evident front is to the northeast, 10 kpc from the cluster center, which separates low-entropy high-metallicity gas and high-entropy lowmetallicity gas. The metallicity map suggests that gas sloshing, rather than an AGN outburst, is the driving force behind the redistribution of the enriched gas in this cluster. The innermost cold front resides within the radius of the strong cool core. The sloshing time scale within the cooling radius, calculated from the Brunt-Väsälä frequency, is an order of magnitude shorter than the cooling time. It is plausible that gas sloshing can contribute to the heating of the cool core, provided that gas of different entropies can be mixed effectively via Kelvin-Helmholtz instability. The estimated age of the outermost front suggests that this is not the first infall of NGC 1404.
We derive the recent growth history of the Fornax Cluster, in particular the recent infall of the giant elliptical galaxy NGC 1404. We show, using a simple cluster minor merger simulation tailored to Fornax and NGC 1404, that a second or more likely third encounter between the two reproduces all main merger features observed in both objects; we firmly exclude a first infall scenario. Our simulations reveal a consistent picture: NGC 1404 passed by NGC 1399 about 1.1 -1.3 Gyrs ago from the NE to the SW and is now almost at the point of its next encounter from the S. This scenario explains the sloshing patterns observed in Fornax -a prominent northern cold front and an inner southern cold front. This scenario also explains the truncated atmosphere, the gas stripping radius of NGC 1404, and its faint gas tail. Independent of the exact history, we can make a number of predictions. A detached bow shock south of NGC 1404 should exist which is a remnant of the galaxy's previous infall at a distance from NGC 1404 between 450 -750 kpc with an estimated Mach number between 1.3 and 1.5. The wake of NGC 1404 also lies S of the galaxy with enhanced turbulence and a slight enhancement in metallicity compared to the undisturbed regions of the cluster. SW of NGC 1404, there is likely evidence of old turbulence originating from the previous infall. No scenario predicts enhanced turbulence outside of the cold front north west of the cluster center.
We show that there is a new class of gas tails -slingshot tails -which form as a subhalo (i.e. a subcluster or early-type cluster galaxy) moves away from the cluster center towards the apocenter of its orbit. These tails can point perpendicular or even opposite to the subhalo direction of motion, not tracing the recent orbital path. Thus, the observed tail direction can be misleading, and we caution against naive conclusions regarding the subhalo's direction of motion based on the tail direction. A head-tail morphology of a galaxy's or subcluster's gaseous atmosphere is usually attributed to ram pressure stripping and the widely applied conclusion is that gas stripped tail traces the most recent orbit. However, during the slingshot tail stage, the subhalo is not being ram pressure stripped (RPS) and the tail is shaped by tidal forces more than just the ram pressure. Thus, applying a classic RPS scenario to a slingshot tail leads not only to an incorrect conclusion regarding the direction of motion, but also to incorrect conclusions in regard to the subhalo velocity, expected locations of shear flows, instabilities and mixing. We describe the genesis and morphology of slingshot tails using data from binary cluster merger simulations, discuss their observable features and how to distinguish them from classic RPS tails. We identify three examples from the literature that are not RPS tails but slingshot tails and discuss other potential candidates.
We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89) which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin 'horns' attached to the northern edge of the gas core (Machacek et al. 2005a). In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10×the radius of the remnant core) from the galaxy center. In our two previous papers (Roediger et al. 2015a,b), we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of ICM viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.