Economic Load Dispatch, ELD can be defined as the way of allocating the load level to the generators of the power plant in such a way that the total demand would be supplied in a most economic manner and completely. In a practical power system, the power plants are not located at the same distance from the centre of loads and their fuel costs are different. Also, under normal operating conditions, the generation capacity is more than the total load demand and losses. Thus, there are many options for scheduling generation. In an interconnected power system, the objective is to find the real and reactive power scheduling of each power plant in such a way as to minimize the operating cost. This means that the generator‟s real and reactive powers are allowed to vary within certain limits so as to meet a particular load demand with minimum fuel cost. This is called optimal power flow problem. In this paper, Economic Load Dispatch (ELD) of real power generation is considered. Economic Load Dispatch (ELD) is the scheduling of generators to minimize total operating cost of generator units subjected to equality constraint of power balance within the minimum and maximum operating limits of the generating units. This paper gives a survey of research work covering the concept of economic load dispatch. Economic load dispatch gives the best saving in cost for any power generation plant operation in which the methodology can be applied by various means from conventional to the advanced. In the past years up to 90s, the conventional techniques were used to make this happen but in the past decades AI techniques have fulfilled the requirements with satisfactory results that are being reviewed.
Infrastructure-As-A-Service (IAAS) provides an environmental setup under any type of cloud. In Distributed file system (DFS), nodes are simultaneously serve computing and storage functions; that is parallel Data Processing and storage in cloud. Here, file is considered as a data or load. That file is partitioned into a number of File chunks (FC) allocated in distinct nodes so that Map Reduce tasks can be performed in parallel over the nodes. Files and Nodes can be dynamically created, deleted, and added. This results in load imbalance in a distributed file system; that is, the file chunks are not distributed as uniformly as possible among the Chunk Servers (CS). Emerging distributed file systems in production systems strongly depend on a central node for chunk reallocation or Distributed node to maintain global knowledge of all chunks. This dependence is clearly inadequate in a large-scale, failure-prone environment because the central load balancer is put under considerable workload that is linearly scaled with the system size, it may thus become the performance bottleneck and the single point of failure and memory wastage in distributed nodes. So, we have to enhance the Client side module with server side module to create, delete and update the file chunks in Client Module. And manage the overall private cloud and apply dynamic load balancing algorithm to perform auto scaling options in private cloud. In this project, a fully distributed load rebalancing algorithm is presented to cope with the load imbalance problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.