Recent results of the searches for Supersymmetry in final states with one or two leptons at CMS are presented. Many Supersymmetry scenarios, including the Constrained Minimal Supersymmetric extension of the Standard Model (CMSSM), predict a substantial amount of events containing leptons, while the largest fraction of Standard Model background events -which are QCD interactions -gets strongly reduced by requiring isolated leptons. The analyzed data was taken in 2011 and corresponds to an integrated luminosity of approximately L = 1 fb −1 . The center-of-mass energy of the pp collisions was √ s = 7 TeV.
In this paper we describe Herwig++ version 2.2, a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton and hadron-hadron collisions. A number of important hard scattering processes are available, together with an interface via the Les Houches Accord to specialized matrix element generators for additional processes. The simulation of Beyond the Standard Model (BSM) physics includes a range of models and allows new models to be added by encoding the Feynman rules of the model. The parton-shower approach is used to simulate initial-and final-state QCD radiation, including colour coherence effects, with special emphasis on the correct description of radiation from heavy particles. The underlying event is simulated using an eikonal multiple parton-parton scattering model. The formation of hadrons from the quarks and gluons produced in the parton shower is described using the cluster hadronization model. Hadron decays are simulated using matrix elements, where possible including spin correlations and off-shell effects.
We present a new version of the CompHEP program (version 4.4). We describe shortly new issues implemented in this version, namely, simplification of quark flavor combinatorics for the evaluation of hadronic processes, Les Houches Accord based CompHEP-PYTHIA interface, processing the color configurations of events, implementation of MSSM, symbolical and numerical batch modes, etc. We discuss how the CompHEP program is used for preparing event generators for various physical processes. We mention a few concrete physics examples for CompHEP based generators prepared for the LHC and Tevatron.
We present a study of the results obtained by combining LO partonic matrix elements with either LO or NLO partons distributions. These are compared to the best prediction using NLO for both matrix elements and parton distributions. The aim is to determine which parton distributions are most appropriate to use in those cases where only LO matrix elements are available, e.g. as in many Monte Carlo generators. Both LO and NLO parton distributions have flaws, sometimes serious, for some processes, so a modified optimal LO set is suggested. We investigate a wide variety of process, and the new modified LO* pdf works at least as well as, and often better than, both LO and NLO pdfs in nearly all cases. The LO* pdf set is now available in the LHAPDF package [1].
Physics at the Large Hadron Collider (LHC) and the International e + e − Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC / LC Study Group so far is summarised in this report. Possible topics for future studies are outlined.4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.