The eggshell waste has been value engineered to a nanocrystalline hydroxyapatite (HA) by microwave processing. To highlight the advantages of eggshell as calcium precursor in the synthesis of HA (OHA), synthetic calcium hydroxide was also used to form HA (SHA) following similar procedure and were compared with a commercially available pure HA (CHA). All the HAs were characterized by X-ray powder diffraction (XRD) method, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and specific surface area measurements. Nanocrystalline nature of OHA is revealed through characteristic broad peaks in XRD patterns, platelets of length 33-50 nm and width 8-14 nm in TEM micrograph and size calculations from specific surface area measurements. FT-IR spectra showed characteristic bands of HA and additionally peaks of carbonate ions. The cell parameter calculations suggest the formation of carbonated HA of B-type. The OHA exhibits superior sinterability in terms of hardness and density than both SHA and CHA may be due to larger surface area of its spherulite structure. The in vitro dissolution study shows longer stability in phosphate buffer and cell culture test using osteoblast cells establishes biocompatibility of OHA.
Rapid synthesis of calcium deficient hydroxyapatite (CDHA, Ca(10-x)(HPO4)x(PO4)(6-x)(OH)(2-x)) with Ca/P ratio 1.5 was done by precipitation using calcium nitrate tetra-hydrate and phosphoric acid and subsequently subjecting to microwave irradiation in a domestic microwave oven for 15 min. Transmission electron microscopy analysis shows needle like morphology of CDHA having length 16-39 nm and width 7-16 nm. The synthesized CDHA has the characteristic HPO4(2-) vibration band at 875 cm(-1) in Fourier transform infrared (FT-IR) spectra. The X-ray powder diffraction (XRD) analysis shows a pattern corresponding to stoichiometric hydroxyapatite (HA) with broad peaks suggesting that CDHA particles were nanosized. Fourier transform Raman spectroscopy (FT-Raman) do not indicate any fluorescence band that is characteristic of non-stoichiometric HA. The thermal decomposition of CDHA to beta tricalcium phosphate (beta-TCP) was also studied for the additional confirmation. The nanosized CDHA was found to be stable up to 600 degrees C.
Both EHA and SHA graft materials are equally efficient in early bone regeneration. Within the limitations of this study the EHA showed promising results. Which indicates the eggshell waste-bio mineral is worthwhile raw material for the production of HA and is a Go Green procedure. Eggshell-derived hydroxyapatite is economic, compared with SHA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.