GaAsPBi is a new class of quaternary III-V compounds that extends the concept of band gap engineering on GaAs with potentials for lattice matching and excellent temperature stability. The alloy has so far been grown only by metalorganic vapor phase epitaxy and this work represents the first epitaxial results of the alloy grown by molecular beam epitaxy (MBE), an alternative technique and better suited for low-temperature processes involving Bismuth. Crystalline quality of the alloys is probed by high-resolution x-ray diffraction and photoluminescence (PL) which show that smooth and optically active films can be grown in limited parameter windows. Temperature-dependent PL shows that the 200 nm, MBE-grown GaAs 0.38 P 0.44 Bi 0.18 film (the composition estimated using x-ray photoelectron spectroscopy) has a band gap temperature stability close to that of GaAsBi, and superior to GaAs. The role of Bi in the quaternary alloy is complicated: Bi not only gets incorporated into the growing film but also enhances the P molar fraction. Based on this insight, strategies for growing GaAsPBi epilayers which are lattice-matched to GaAs are described, potentially affecting many important III-V based heterostructures such as lasers, light-emitting diodes, and solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.