Two-dimensional group III monochalcogenides have recently attracted quite attention for their wide spectrum of optical and electric properties, being promising candidates for optoelectronic and novel electrical applications. However, in their pristine form they are extremely sensitive and vulnerable to oxygen in air and need good mechanical protection and passivization. In this work we modeled and studied two newly designed van der Waals (vdW) heterostructures based on layer of hexagonal boron nitride (hBN) and GaTe or InTe monolayer. Using density functional theory, we investigate electronic and optical properties of those structures. Their moderate band gap and excellent absorption coefficient makes them ideal candidate for broad spectrum absorbers, covering all from part of IR to far UV spectrum, with particularly good absorption of UV light. The hBN layer, which can be beneficial for protection of sensitive GaTe and InTe, does not only preserve their optical properties but also enhances it by changing the band gap width and enhancing absorption in low-energy part of spectrum. Calculated binding energies prove that all three stacking types are possible to obtain experimentally, with H-top as the preferable stacking position. Moreover, it is shown that type of stacking does not affect any relevant properties and bandstructure doesn’t reveal any significant change for each stacking type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.