Background:: A novel coronavirus disease, 2019-nCoV (COVID-19), reported first in Wuhan, the capital of Hubei, China in late December 2019 and subsequently reached pandemic level affecting around 213 countries. As of 24th May 2020, the total number of positive cases confirmed is 5,446,514 and 344,754 death reports worldwide. COVID-19 infection causes pneumonia-like severe respiratory infection and acute lung failure. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA beta coronavirus that is a confirmed causative agent of COVID-19. SARS-CoV-2 may use angiotensin-converting enzyme 2 (ACE2), unlike the receptor utilized by SARS-CoV (emerged in 2002) to infect humans. People with a history of hypertension, chronic obstructive pulmonary disease, diabetes, cardiovascular disease are more susceptible to SARS-CoV-2. Objective:: The purpose behind this review is to help the society to distinguish and deal with SARS-CoV-2, and make available a reference for forthcoming studies. Methods:: Recently, a diagnostic primer sets on the SARS-CoV-2 genome have been identified. The receptor-binding domain of SARS-COV-2 highlighted the mode by which beta-CoV recognizes ACE2. Various diagnostic tools are available to differentiate and identify SARS-CoV-2 infection as RT-PCR, antigen detection assay, and antibody detection assay. Different strategies have been employed to control the SARS-CoV-2, considering various drug targets like the main protease (3CLPro), papain-like protease (PLpro), helicase (NSP13), RNA dependent RNA polymerase (RdRp), and viral envelope (E) protein. Conclusion:: In the present review, we have updated details of transmission, pathogenesis, genome structure, diagnostic criteria, clinical characteristics, therapeutics, and vaccine development of the SARS-CoV-2 infection, which may be significant in the control and response to the COVID-19 outbreak.
Objective: The current study entails quality by design (QbD) enabled the development of a simple, rapid, sensitive, and cost-effective RP-HPLC method for estimation of Lapatinib ditosylate (LPT) in a newly prepared nano-liposomal formulation which has not been reported earlier. Methods: The chromatographic factors were screened using a fractional factorial design. A central composite design was employed as a response surface methodology. Mobile phase ratio, flow rate, and wavelength were identified as critical method parameters. To minimize retention time, peak area and theoretical plates were employed as critical analytical attributes. A novel nano-liposomal formulation of LPT was prepared by the film hydration method. Results: The optimized chromatographic condition was obtained at a mobile phase composition of methanol and 0.05% v/v o-phosphoric acid in water (81:19 v/v), flow rate 0.7 ml/min, and peak detected at wavelength 261 nm using DAD detector. The retention time for Lapatinib was 3.702 min. The developed method was validated as per ICH guidelines ICH Q2 (R1). Linearity (R2= 0.999) was observed in the range of 10-50μg/ml. The limit of detection and limit of quantitation was found to be 0.6309μg/ml and 1.9120μg/ml, respectively. LPT containing liposome formulation assay was found to be 99.03% and %RSD was less than 1%. Conclusion: The newly developed RP-HPLC method applying the QbD approach was found to be simple, specific, precise, accurate, linear, and rugged, with good recovery of LPT in the nano-liposome formulation in a cost-effective manner. Hence it can be employed for the quantification of LPT in bulk and pharmaceutical formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.