Newly prepared titanium alloy (Ti-13Zr-13Nb (TZN)) using powder metallurgy is considered in this investigation. Titanium alloys (TZN) are used in hip and knee replacement for orthopedic implants. Conventional machining, TZN alloys produce higher tool wear rate and poor surface quality, but this can be reduced by Electrical Discharge Machining (EDM) method. Moreover, EDM produce good biological and corrosion resistant surface. In this research, experiments were conducted by considering the influential process factors such as pulse on time, pulse off time, voltage, and current. The experiments were designed based on Response Surface Methodology (RSM) of face centered central composite design. Analysis of Variance (ANOVA) was conducted to identify the significance process factors and their relation to output responses such as Electrode Wear Rate (EWR), Surface Roughness (SR) and Material Removal Rate (MRR). Further, an empirical model was developed by RSM in order to predict the output responses.
The aim of this research work is to determine the mechanical, morphological and thermal properties of spherical silica (silica-A), amorphous silica (silica-B) and Roselle fiber (RF) reinforced polyurethane (PU) hybrid nanocomposites. The PU nanocomposites were fabricated with different weight percentages, 0.50 to 1 wt% for silica-A and silica-B, while 1-2 wt% for RF. These experiments were systematically designed and analyzed by response surface methodology in a central composite design approach. As per the design of the experiments, the hybrid PU nanocomposites were prepared by using a one shot process. The mathematical models developed to predict the results obtained were in good coherence with the experimental results, and were within 95% confidence levels for tensile and flexural strength. The optimum weight percentage of Roselle, silica-A and silica-B were 2, 0.78 and 1%, respectively. The optimized environmentally friendly hybrid nanocomposite demonstrated exceptional mechanical and thermal properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.