The paper presents the results of an experiment on the effect of pre-sowing stimulation of seeds with atmospheric pressure plasma jet operating with dielectric barrier discharge (DBD plasma jet) on the process of germination of Thuringian Mallow (Lavatera thuringiaca L.). Five groups of seeds characterized by a different exposure times (1, 2, 5, 10 and 15 minutes) as well as untreated seeds—control were used. Pre-sowing plasma stimulation of seeds improved germination parameters such as: germination capacity and germination energy for all tested groups relative to control. The highest germination parameters were obtained for seeds stimulated with plasma for the exposure times of 2 and 5 min. The analysis of the contact surface angle indicated the decrease of its’ mean values upon seed stimulation while no statistical effects were observed. Analysis of the SEM scans revealed the increase in seed pattern intensity which could be attributed to removing of the surface parts of cuticle possibly covered with wax upon short time—2 and 5 min plasma treatment. Such a phenomenon can act similarly to mechanical scarification of seeds. Longer exposure of seeds to plasma resulted in affecting the deeper zone of cuticle and damage or fracture of some parts of the cuticle. Lower germination parameters of seeds upon longer exposure times to plasma may indicate mechanical damage of the seeds.
The paper presents experimental results concerning pre‐sowing stimulation of Thuringian Mallow (Lavatera thuringiaca L.) seeds with non‐thermal plasma generated in GlidArc reactor (dry nitrogen, atmospheric pressure) and its effect on the germination process. Five groups of seeds characterized by different exposure times were used. The effect of cold plasma on seeds was analyzed by investigation of microscopic pictures of carbon coated seed surfaces registered by means of electron scanning microscope. Visible changes in the seed surface structure could enhance the formation of micro‐pores which may be involved in water absorption, thus facilitating faster seed germination. Pre‐sowing plasma stimulation of seeds improved germination parameters such as germination capacity and germination energy for all tested groups, relative to control. The highest germination parameters were obtained for seeds stimulated with plasma for the exposure times of 2 and 5 min.
The Cold Atmospheric pressure Plasma (CAP) technology is an emerging technology used for conditioning and microbiological decontamination of biomaterials including food. A novel tool for inactivation of juice background spoilage microorganisms, as well as high count of inoculated yeast while maintaining physicochemical properties in tomato juice - CAP technology was utilized in this study. Dry matter content and pH were not significantly influenced by CAP generated in GlidArc reactor. Small increase of lycopene, and slight loss of vitamin C content were observed.
The paper presents the possibility of applying ultrasonic technology for inactivation of mesophilic aerobic microorganisms, lactic acid bacteria, coliform bacteria, and yeast with the maintenance of the chemical and structural properties of tomato juice. The research was conducted on fresh tomato juice obtained from the Apis F1 variety. Pressed juice was exposed to high power ultrasound and frequency 20 kHz with three operational parameters: ultrasound intensity (28 and 40 W cm−2), treatment time (2, 5, and 10 min), and product storage time (1, 4, 7 and 10 days). The temperature of the juice during the sonication ranged from 37 to 52 °C depending on the intensity of ultrasound and time of treatment. Effectiveness of the tested microorganisms eradication in the juice depended on the amplitude and duration of the ultrasound treatment. It was shown that the juice exposed to an ultrasonic field with an intensity of 40 W cm−2 for 10 min was microbiologically pure and free from spoilage microorganism even after 10 storage days. No statistically significant differences in pH were found between the untreated juice and the sonicated samples. The ultrasonic treatment was found to change the content of lycopene in small degree (both an increase and a decrease, depending on the processing time) and to induce a small decrease in the vitamin C content. The study suggests that the ultrasonic treatment can be successfully implemented on an industrial scale for the production of not-from-concentrate (NFC) tomato juice.
Functional foods include cold-pressed oils, which are a rich source of antioxidants and bioactive n-3 and n-6 polyunsaturated fatty acids. The aim of this study was to assess the quality of rapeseed oils supplemented with Spanish sage and cress oils. Seven oil mixtures consisting of 70% of rapeseed oil and 30% of sage and/or cress oil were prepared for the analyses. The oil mixtures were analyzed to determine their acid value, peroxide value, oxidative stability, and fatty acid composition. In terms of the acid value and the peroxide value, all mixtures met the requirements for cold-pressed vegetable oils. The enrichment of the rapeseed oil with α-linolenic acid-rich fats resulted in a substantially lower ratio of n-6 to n-3 acids in the mixtures than in the rapeseed oil. The mixture of the rapeseed oil with the sage and cress oils in a ratio of 70:10:20 exhibited higher oxidative stability than the raw materials used for enrichment and a nearly 20% α-linolenic acid content. The oils proposed in this study can improve the ratio of n-6:n-3 acids in modern diets. Additionally, mixing the cress seed oils with rapeseed oil and chia oil resulted in a reduction in the content of erucic acid in the finished product. This finding indicates that cress seeds, despite their high content of erucic acid, can be used as food components. The production of products with a positive effect on human health is one of the most important factors in the sustainable development of agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.