Abstract. The Iceland Deep Drilling Project research well RN-15/IDDP-2 at Reykjanes, Iceland, reached its target of supercritical conditions at a depth of 4.5 km in January 2017. After only 6 days of heating, the measured bottom hole temperature was 426 °C, and the fluid pressure was 34 MPa. The southern tip of the Reykjanes peninsula is the landward extension of the Mid-Atlantic Ridge in Iceland. Reykjanes is unique among Icelandic geothermal systems in that it is recharged by seawater, which has a critical point of 406 °C at 29.8 MPa. The geologic setting and fluid characteristics at Reykjanes provide a geochemical analog that allows us to investigate the roots of a mid-ocean ridge submarine black smoker hydrothermal system. Drilling began with deepening an existing 2.5 km deep vertical production well (RN-15) to 3 km depth, followed by inclined drilling directed towards the main upflow zone of the system, for a total slant depth of 4659 m ( ∼ 4.5 km vertical depth). Total circulation losses of drilling fluid were encountered below 2.5 km, which could not be cured using lost circulation blocking materials or multiple cement jobs. Accordingly, drilling continued to the total depth without return of drill cuttings. Thirteen spot coring attempts were made below 3 km depth. Rocks in the cores are basalts and dolerites with alteration ranging from upper greenschist facies to amphibolite facies, suggesting that formation temperatures at depth exceed 450 °C. High-permeability circulation-fluid loss zones (feed points or feed zones) were detected at multiple depth levels below 3 km depth to bottom. The largest circulation losses (most permeable zones) occurred between the bottom of the casing and 3.4 km depth. Permeable zones encountered below 3.4 km accepted less than 5 % of the injected water. Currently, the project is attempting soft stimulation to increase deep permeability. While it is too early to speculate on the energy potential of this well and its economics, the IDDP-2 is a milestone in the development of geothermal resources and the study of hydrothermal systems. It is the first well that successfully encountered supercritical hydrothermal conditions, with potential high-power output, and in which on-going hydrothermal metamorphism at amphibolite facies conditions can be observed. The next step will be to carry out flow testing and fluid sampling to determine the chemical and thermodynamic properties of the formation fluids.
The typical rating for downhole measurement-while-drilling equipment for oil and gas drilling is between 150°C and 175°C. There are currently few available drilling systems rated for operation at temperatures above 200°C. This paper describes the development, testing and field deployment of a drilling system comprised of drill bits, positive displacement motors and drilling fluids capable of drilling at operating temperatures up to 300°C. It also describes the development and testing of a 300°C capable measurement-while-drilling platform. The development of 300°C technologies for geothermal drilling also extends tool capabilities, longevity and reliability at lower oilfield temperatures. New technologies developed in this project include 300°C drill bits, metal-to-metal motors, and drilling fluid, and an advanced hybrid electronics and downhole cooling system for a measurement-while-drilling platform. The overall approach was to remove elastomers from the drilling system and to provide a robust "drilling-ready" downhole cooling system for electronics. The project included laboratory testing, field testing and full field deployment of the drilling system. The US Department of Energy Geothermal Technologies Office partially funded the project. The use of a sub-optimal drilling system due to the limited availability of very high temperature technology can result in unnecessarily high overall wellbore construction costs. It can lead to short runs, downhole tool failures and poor drilling rates. The paper presents results from the testing and deployment of the 300°C drilling system. It describes successful laboratory testing of individual bottom-hole-assembly components, and full-scale integration tests on an in-house research rig. The paper also describes the successful deployment of the 300°C drilling system in the exploratory geothermal well IDDP-2 as part of the Iceland Deep Drilling Project. The well reached a measured depth of 4659m, by far the deepest in Iceland. The paper includes drilling performance data and the results of post-run analysis of bits and motors used in this well, which confirm the encouraging results obtained during laboratory tests. The paper also discusses testing and performance of the 300°C rated measurement-while-drilling components – hybrid electronics, power and telemetry - and the performance of the drilling tolerant cooling system. This is the industry's first 300°C capable drilling system, comprising metal-to-metal motors, drill bits, drilling fluid and accompanying measurement-while-drilling system. These new technologies provide opportunities for drilling oil and gas wells in previously undrillable ultra-high temperature environments.
Cementing operations in wellbores, especially for long casings, are often challenging and prone to deficiencies when not properly planned and executed. While exploring for and exploiting of geothermal resources at temperatures above the critical point of water was attempted in different drilling projects in recent years, the well design, and especially the procedure to run and cement long production casings became a key challenge for drilling engineers. For the first time, a reverse cementing job for a 2.97 km long production casing in a high-temperature geothermal well could be monitored and analyzed using a combination of permanently installed distributed fiber optic and electronic sensors as well as conventional well logging equipment. Data from the permanently installed sensors were used to monitor and evaluate the cementation process as well as the onset of the cement hydration. Based on the data, the understanding of downhole fluid dynamics during cementation could be improved. Our analysis suggests that the cement was diluted during cement placement and partly lost into the formation. These findings can help to better prepare for future drilling ventures under similar downhole conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.