Warning: this paper contains example data that may be offensive or upsetting.Over the last several years, end-to-end neural conversational agents have vastly improved in their ability to carry a chit-chat conversation with humans. However, these models are often trained on large datasets from the internet, and as a result, may learn undesirable behaviors from this data, such as toxic or otherwise harmful language. Researchers must thus wrestle with the issue of how and when to release these models. In this paper, we survey the problem landscape for safety for end-to-end conversational AI and discuss recent and related work. We highlight tensions between values, potential positive impact and potential harms, and provide a framework for making decisions about whether and how to release these models, following the tenets of value-sensitive design. We additionally provide a suite of tools to enable researchers to make better-informed decisions about training and releasing end-to-end conversational AI models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.