Published by Copernicus Publications on behalf of the European Geosciences Union. 458 A. J. M. Piters et al.: The CINDI campaign: design, execution and early resultsAbstract. From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe-art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CE-SAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO 2 , O 4 and HCHO with MAX-DOAS agree within 5 to 15 %, vertical profiles of NO 2 derived from several independent instruments agree within 25 % of one another, and MAX-DOAS aerosol optical thickness agrees within 20-30 % with AERONET data. For the in-situ NO 2 instrument using a molybdenum converter, a bias was found as large as 5 ppbv during day time, when compared to the other in-situ instruments using photolytic converters.
Abstract. Since 2005 the Measuring Ammonia in Nature (MAN) network monitors atmospheric ammonia concentrations in nature reserve areas in the Netherlands (http://man. rivm.nl). The main aim of the network is to monitor national trends, to assess regional deviations and to validate model calculations. Measurements are performed with commercial passive samplers, calibrated monthly against ammonia measurements of active sampling devices. The sampling is performed by an extensive group of local volunteers, which minimizes the cost and enables the use of local knowledge. We show the MAN network to be well capable of monitoring trends on national and local scales and providing data for more detailed local analyses. The quality of the network is such that trends over time for individual MAN areas can be detected on the order of 3 % per year for time series of 6-9 years.
Abstract. EAGLE2006 -an intensive field campaign for the advances in land surface hydrometeorological processes -was carried out in the Netherlands from 8th to 18th June 2006, involving 16 institutions with in total 67 people from 16 different countries. In addition to the acquisition of multiangle and multi-sensor satellite data, several airborne instruments -an optical imaging sensor, an imaging microwave radiometer, and a flux airplane -were deployed and extensive Correspondence to: Z. Su (b su@itc.nl) ground measurements were conducted over one grassland site at Cabauw and two forest sites at Loobos and Speulderbos in the central part of the Netherlands. The generated data set is both unique and urgently needed for the development and validation of models and inversion algorithms for quantitative land surface parameter estimation and land surface hydrometeorological process studies. EAGLE2006 was led by the Department of Water Resources of the International Institute for Geo-Information Science and Earth Observation (ITC) and originated from the combination of a number of initiatives supported by different funding agencies. The objectives of the EAGLE2006 campaign were closely Published by Copernicus Publications on behalf of the European Geosciences Union. 834 Z. Su et al.: EAGLE 2006 -Multi-purpose, multi-angle and multi-sensor in-situ and airborne campaigns related to the objectives of other European Space Agency (ESA) campaign activities (SPARC2004, SEN2FLEX2005 and especially AGRISAR2006). However, one important objective of the EAGLE2006 campaign is to build up a data base for the investigation and validation of the retrieval of bio-geophysical parameters, obtained at different radar frequencies (X-, C-and L-Band) and at hyperspectral optical and thermal bands acquired simultaneously over contrasting vegetated fields (forest and grassland). As such, all activities were related to algorithm development for future satellite missions such as the Sentinels and for validation of retrievals of land surface parameters with optical and thermal and microwave sensors onboard current and future satellite missions. This contribution describes the campaign objectives and provides an overview of the airborne and field campaign dataset. This dataset is available for scientific investigations and can be accessed on the ESA Principal Investigator Portal http://eopi.esa.int.
Measurements of total nitrogen and inorganic nitrogen in precipitation samples from NitroEurope sites across Europe permit the calculation of organic nitrogen concentrations and wet deposition, by difference. The contribution of organic N to total N in precipitation ranged from only a few % to around 40% across sites from Northern Finland to Italy, similar to results from previous individual studies. This paper presents the absolute and relative contributions of organic N to wet N deposition across Europe, and examines seasonal trends. There were only weak correlations with other solutes in precipitation. These simple statistics indicate that sources of organic N in precipitation vary across Europe, and that no single source is responsible. The organic N contributes to total N deposition, yet this input is rarely quantified in nitrogen budgets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.