Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Laboratory generation of strong magnetic fields opens new frontiers in plasma and beam physics, astro- and solar-physics, materials science, and atomic and molecular physics. Although kilotesla magnetic fields have already been produced by magnetic flux compression using an imploding metal tube or plasma shell, accessibility at multiple points and better controlled shapes of the field are desirable. Here we have generated kilotesla magnetic fields using a capacitor-coil target, in which two nickel disks are connected by a U-turn coil. A magnetic flux density of 1.5 kT was measured using the Faraday effect 650 μm away from the coil, when the capacitor was driven by two beams from the GEKKO-XII laser (at 1 kJ (total), 1.3 ns, 0.53 or 1 μm, and 5 × 1016 W/cm2).
Extreme ultraviolet (EUV) radiation from laser-produced plasma (LPP) has been thoroughly studied for application in mass production of next-generation semiconductor devices. One critical issue for the realization of an LPP-EUV light source for lithography is the conversion efficiency (CE) from incident laser power to EUV radiation of 13.5-nm wavelength (within 2% bandwidth). Another issue is solving the problem of damage caused when debris reaches an EUV collecting mirror. Here, we present an improved power balance model, which can be used for the optimization of laser and target conditions to obtain high CE. An integrated numerical simulation code has been developed for the target design. The code agrees well with experimental results not only for CE but also for detailed EUV spectral structure. We propose a two-pulse irradiation scheme for high CE, and reduced ion debris using a carbon dioxide laser and a droplet or a punch-out target. Using our benchmarked numerical simulation code, we find a possibility to obtain CE up to 6–7%, which is more than twice that achieved to date. We discuss the reduction of ion energy within the two-pulse irradiation scheme. The mitigation of energetic ions by a magnetic field is also discussed, and we conclude that no serious instability occurs due to large ion gyroradius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.